Advertisements
Advertisements
Question
logx2 x
Solution
\[\log_{x^2} x = \frac{\log x}{\log x^2} (\text{ by change of base property })\]
\[ = \frac{\log x}{2 \log x} \left[ \log x^2 = 2 \log x \right]\]
\[ = \frac{1}{2}\]
\[\text{ Now }\frac{d}{dx}\left( \log_{x^2} x \right)=\frac{d}{dx}\left( \frac{1}{2} \right)\]
\[ = 0 \left( \because\frac{1}{2}\text{ is a constant } \right )\]
APPEARS IN
RELATED QUESTIONS
Find the derivative of x–3 (5 + 3x).
Find the derivative of x5 (3 – 6x–9).
Find the derivative of x–4 (3 – 4x–5).
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
(x + a)
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(px+ q) (r/s + s)`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
(ax + b)n (cx + d)m
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
sinn x
Find the derivative of f (x) = 3x at x = 2
Find the derivative of the following function at the indicated point:
Find the derivative of the following function at the indicated point:
2 cos x at x =\[\frac{\pi}{2}\]
k xn
Differentiate of the following from first principle:
x cos x
tan2 x
\[\tan \sqrt{x}\]
\[\tan \sqrt{x}\]
log3 x + 3 loge x + 2 tan x
\[\left( \sqrt{x} + \frac{1}{\sqrt{x}} \right)^3\]
2 sec x + 3 cot x − 4 tan x
x2 ex log x
(1 +x2) cos x
\[\frac{x^2 \cos\frac{\pi}{4}}{\sin x}\]
\[\frac{a x^2 + bx + c}{p x^2 + qx + r}\]
\[\frac{x \tan x}{\sec x + \tan x}\]
\[\frac{x^2 - x + 1}{x^2 + x + 1}\]
\[\frac{{10}^x}{\sin x}\]
If x < 2, then write the value of \[\frac{d}{dx}(\sqrt{x^2 - 4x + 4)}\]
If f (x) = \[\frac{x^2}{\left| x \right|},\text{ write }\frac{d}{dx}\left( f (x) \right)\]
Write the derivative of f (x) = 3 |2 + x| at x = −3.
Mark the correct alternative in of the following:
If \[y = \frac{1 + \frac{1}{x^2}}{1 - \frac{1}{x^2}}\] then \[\frac{dy}{dx} =\]
Mark the correct alternative in each of the following:
If\[f\left( x \right) = \frac{x^n - a^n}{x - a}\] then \[f'\left( a \right)\]
Find the derivative of f(x) = tan(ax + b), by first principle.
(ax2 + cot x)(p + q cos x)
Let f(x) = x – [x]; ∈ R, then f'`(1/2)` is ______.