English

Logx2 X - Mathematics

Advertisements
Advertisements

Question

logx2 x

Solution

\[\log_{x^2} x = \frac{\log x}{\log x^2} (\text{ by change of base property })\]
\[ = \frac{\log x}{2 \log x} \left[ \log x^2 = 2 \log x \right]\]
\[ = \frac{1}{2}\]
\[\text{ Now }\frac{d}{dx}\left( \log_{x^2} x \right)=\frac{d}{dx}\left( \frac{1}{2} \right)\]
\[ = 0 \left( \because\frac{1}{2}\text{ is a constant } \right )\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 30: Derivatives - Exercise 30.4 [Page 39]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 30 Derivatives
Exercise 30.4 | Q 16 | Page 39

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Find the derivative of x–3 (5 + 3x).


Find the derivative of x5 (3 – 6x–9).


Find the derivative of x–4 (3 – 4x–5).


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

(x + a)


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(px+ q) (r/s + s)`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

(ax + b)n (cx + d)m


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

sinn x


Find the derivative of f (x) = 3x at x = 2 


Find the derivative of the following function at the indicated point:


Find the derivative of the following function at the indicated point:

2 cos x at x =\[\frac{\pi}{2}\] 


k xn


Differentiate of the following from first principle:

 x cos x


tan2 


\[\tan \sqrt{x}\]


\[\tan \sqrt{x}\] 


 log3 x + 3 loge x + 2 tan x


\[\left( \sqrt{x} + \frac{1}{\sqrt{x}} \right)^3\] 


2 sec x + 3 cot x − 4 tan x


x2 ex log 


(1 +x2) cos x


\[\frac{x^2 \cos\frac{\pi}{4}}{\sin x}\] 


\[\frac{a x^2 + bx + c}{p x^2 + qx + r}\] 


\[\frac{x \tan x}{\sec x + \tan x}\]


\[\frac{x^2 - x + 1}{x^2 + x + 1}\] 


\[\frac{{10}^x}{\sin x}\] 


If x < 2, then write the value of \[\frac{d}{dx}(\sqrt{x^2 - 4x + 4)}\] 


If f (x) = \[\frac{x^2}{\left| x \right|},\text{ write }\frac{d}{dx}\left( f (x) \right)\] 


Write the derivative of f (x) = 3 |2 + x| at x = −3. 


Mark the correct alternative in  of the following: 

If \[y = \frac{1 + \frac{1}{x^2}}{1 - \frac{1}{x^2}}\] then \[\frac{dy}{dx} =\] 


Mark the correct alternative in each of the following: 

If\[f\left( x \right) = \frac{x^n - a^n}{x - a}\] then \[f'\left( a \right)\] 


Find the derivative of f(x) = tan(ax + b), by first principle.


(ax2 + cot x)(p + q cos x)


Let f(x) = x – [x]; ∈ R, then f'`(1/2)` is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×