मराठी

( X 3 + 1 ) ( X − 2 ) X 2 - Mathematics

Advertisements
Advertisements

प्रश्न

\[\frac{( x^3 + 1)(x - 2)}{x^2}\] 

उत्तर

\[\frac{d}{dx}\left( \frac{\left( x^3 + 1 \right)\left( x - 2 \right)}{x^2} \right)\]
\[ = \frac{d}{dx}\left( \frac{x^4 - 2 x^3 + x - 2}{x^2} \right)\]
\[ = \frac{d}{dx}\left( \frac{x^4}{x^2} \right) - 2\frac{d}{dx}\left( \frac{x^3}{x^2} \right) + \frac{d}{dx}\left( \frac{x}{x^2} \right) - \frac{d}{dx}\left( \frac{2}{x^2} \right)\]
\[ = \frac{d}{dx}\left( x^2 \right) - 2\frac{d}{dx}\left( x \right) + \frac{d}{dx}\left( x^{- 1} \right) - 2\frac{d}{dx}\left( x^{- 2} \right)\]
\[ = 2x - 2 - \frac{1}{x^2} - 2\left( - 2 \right) x^{- 3} \]
\[ = 2x - 2 - \frac{1}{x^2} + \frac{4}{x^3}\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 30: Derivatives - Exercise 30.3 [पृष्ठ ३४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 30 Derivatives
Exercise 30.3 | Q 10 | पृष्ठ ३४

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`a/x^4 = b/x^2 + cos x`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`cos x/(1 + sin x)`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(a + bsin x)/(c + dcosx)`


Find the derivative of the following function at the indicated point:


Find the derivative of the following function at the indicated point:

2 cos x at x =\[\frac{\pi}{2}\] 


Find the derivative of the following function at the indicated point: 

 sin 2x at x =\[\frac{\pi}{2}\]


\[\frac{2}{x}\]


\[\frac{1}{\sqrt{x}}\]


 (x2 + 1) (x − 5)


Differentiate  of the following from first principle:

e3x


Differentiate  of the following from first principle:

 eax + b


x ex


Differentiate of the following from first principle:

(−x)−1


Differentiate each of the following from first principle:

\[3^{x^2}\]


tan2 


\[\sqrt{\tan x}\]


\[\frac{x^3}{3} - 2\sqrt{x} + \frac{5}{x^2}\]


 log3 x + 3 loge x + 2 tan x


Find the slope of the tangent to the curve (x) = 2x6 + x4 − 1 at x = 1.


x3 sin 


xn tan 


(x3 + x2 + 1) sin 


x2 sin x log 


\[\frac{x^2 + 1}{x + 1}\] 


\[\frac{2x - 1}{x^2 + 1}\] 


\[\frac{x}{1 + \tan x}\] 


\[\frac{x}{1 + \tan x}\] 


\[\frac{p x^2 + qx + r}{ax + b}\]


\[\frac{x + \cos x}{\tan x}\] 


\[\frac{ax + b}{p x^2 + qx + r}\] 


Write the value of \[\lim_{x \to a} \frac{x f (a) - a f (x)}{x - a}\]


Mark the correct alternative in  of the following:

If\[f\left( x \right) = 1 - x + x^2 - x^3 + . . . - x^{99} + x^{100}\]then \[f'\left( 1 \right)\] 


Mark the correct alternative in of the following:

If \[y = \sqrt{x} + \frac{1}{\sqrt{x}}\] then \[\frac{dy}{dx}\] at x = 1 is


Mark the correct alternative in  of the following:
If\[f\left( x \right) = 1 + x + \frac{x^2}{2} + . . . + \frac{x^{100}}{100}\] then \[f'\left( 1 \right)\] is equal to 


Mark the correct alternative in each of the following:
If\[y = \frac{\sin x + \cos x}{\sin x - \cos x}\] then \[\frac{dy}{dx}\]at x = 0 is 


Find the derivative of f(x) = tan(ax + b), by first principle.


(ax2 + cot x)(p + q cos x)


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×