Advertisements
Advertisements
प्रश्न
\[\frac{( x^3 + 1)(x - 2)}{x^2}\]
उत्तर
\[\frac{d}{dx}\left( \frac{\left( x^3 + 1 \right)\left( x - 2 \right)}{x^2} \right)\]
\[ = \frac{d}{dx}\left( \frac{x^4 - 2 x^3 + x - 2}{x^2} \right)\]
\[ = \frac{d}{dx}\left( \frac{x^4}{x^2} \right) - 2\frac{d}{dx}\left( \frac{x^3}{x^2} \right) + \frac{d}{dx}\left( \frac{x}{x^2} \right) - \frac{d}{dx}\left( \frac{2}{x^2} \right)\]
\[ = \frac{d}{dx}\left( x^2 \right) - 2\frac{d}{dx}\left( x \right) + \frac{d}{dx}\left( x^{- 1} \right) - 2\frac{d}{dx}\left( x^{- 2} \right)\]
\[ = 2x - 2 - \frac{1}{x^2} - 2\left( - 2 \right) x^{- 3} \]
\[ = 2x - 2 - \frac{1}{x^2} + \frac{4}{x^3}\]
APPEARS IN
संबंधित प्रश्न
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`a/x^4 = b/x^2 + cos x`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`cos x/(1 + sin x)`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(a + bsin x)/(c + dcosx)`
Find the derivative of the following function at the indicated point:
Find the derivative of the following function at the indicated point:
2 cos x at x =\[\frac{\pi}{2}\]
Find the derivative of the following function at the indicated point:
sin 2x at x =\[\frac{\pi}{2}\]
\[\frac{2}{x}\]
\[\frac{1}{\sqrt{x}}\]
(x2 + 1) (x − 5)
Differentiate of the following from first principle:
e3x
Differentiate of the following from first principle:
eax + b
x ex
Differentiate of the following from first principle:
(−x)−1
Differentiate each of the following from first principle:
\[3^{x^2}\]
tan2 x
\[\sqrt{\tan x}\]
\[\frac{x^3}{3} - 2\sqrt{x} + \frac{5}{x^2}\]
log3 x + 3 loge x + 2 tan x
Find the slope of the tangent to the curve f (x) = 2x6 + x4 − 1 at x = 1.
x3 sin x
xn tan x
(x3 + x2 + 1) sin x
x2 sin x log x
\[\frac{x^2 + 1}{x + 1}\]
\[\frac{2x - 1}{x^2 + 1}\]
\[\frac{x}{1 + \tan x}\]
\[\frac{x}{1 + \tan x}\]
\[\frac{p x^2 + qx + r}{ax + b}\]
\[\frac{x + \cos x}{\tan x}\]
\[\frac{ax + b}{p x^2 + qx + r}\]
Write the value of \[\lim_{x \to a} \frac{x f (a) - a f (x)}{x - a}\]
Mark the correct alternative in of the following:
If\[f\left( x \right) = 1 - x + x^2 - x^3 + . . . - x^{99} + x^{100}\]then \[f'\left( 1 \right)\]
Mark the correct alternative in of the following:
If \[y = \sqrt{x} + \frac{1}{\sqrt{x}}\] then \[\frac{dy}{dx}\] at x = 1 is
Mark the correct alternative in of the following:
If\[f\left( x \right) = 1 + x + \frac{x^2}{2} + . . . + \frac{x^{100}}{100}\] then \[f'\left( 1 \right)\] is equal to
Mark the correct alternative in each of the following:
If\[y = \frac{\sin x + \cos x}{\sin x - \cos x}\] then \[\frac{dy}{dx}\]at x = 0 is
Find the derivative of f(x) = tan(ax + b), by first principle.
(ax2 + cot x)(p + q cos x)