Advertisements
Advertisements
प्रश्न
Find the slope of the tangent to the curve f (x) = 2x6 + x4 − 1 at x = 1.
उत्तर
\[\text{ Slope of the tangent } =f'(x)\]
\[ = \frac{d}{dx}\left( 2 x^6 + x^4 - 1 \right)\]
\[ = 2\frac{d}{dx}\left( x^6 \right) + \frac{d}{dx}\left( x^4 \right) - \frac{d}{dx}\left( 1 \right)\]
\[ = 12 x^5 + 4 x^3 \]
\[ \therefore \text{ Slope of the tangent at }x=1:\]
\[12 \left( 1 \right)^5 + 4 \left( 1 \right)^3 = 12 + 4 = 16\]
APPEARS IN
संबंधित प्रश्न
Find the derivative of x2 – 2 at x = 10.
Find the derivative of f (x) = 99x at x = 100
\[\frac{2}{x}\]
\[\frac{1}{x^3}\]
(x2 + 1) (x − 5)
\[\frac{2x + 3}{x - 2}\]
Differentiate each of the following from first principle:
\[3^{x^2}\]
tan (2x + 1)
\[\sin \sqrt{2x}\]
\[\frac{x^3}{3} - 2\sqrt{x} + \frac{5}{x^2}\]
\[\left( \sqrt{x} + \frac{1}{\sqrt{x}} \right)^3\]
xn loga x
sin x cos x
x−3 (5 + 3x)
\[\frac{x^2 + 1}{x + 1}\]
\[\frac{e^x - \tan x}{\cot x - x^n}\]
\[\frac{a x^2 + bx + c}{p x^2 + qx + r}\]
\[\frac{e^x}{1 + x^2}\]
\[\frac{e^x + \sin x}{1 + \log x}\]
\[\frac{x \sin x}{1 + \cos x}\]
\[\frac{2^x \cot x}{\sqrt{x}}\]
\[\frac{a + \sin x}{1 + a \sin x}\]
\[\frac{p x^2 + qx + r}{ax + b}\]
\[\frac{\sec x - 1}{\sec x + 1}\]
\[\frac{x^5 - \cos x}{\sin x}\]
\[\frac{x}{\sin^n x}\]
\[\frac{ax + b}{p x^2 + qx + r}\]
Write the value of \[\frac{d}{dx}\left( x \left| x \right| \right)\]
If f (x) = \[\frac{x^2}{\left| x \right|},\text{ write }\frac{d}{dx}\left( f (x) \right)\]
Mark the correct alternative in of the following:
Let f(x) = x − [x], x ∈ R, then \[f'\left( \frac{1}{2} \right)\]
Mark the correct alternative in of the following:
If\[f\left( x \right) = 1 - x + x^2 - x^3 + . . . - x^{99} + x^{100}\]then \[f'\left( 1 \right)\]
Mark the correct alternative in of the following:
If \[f\left( x \right) = x^{100} + x^{99} + . . . + x + 1\] then \[f'\left( 1 \right)\] is equal to
Mark the correct alternative in each of the following:
If\[y = \frac{\sin x + \cos x}{\sin x - \cos x}\] then \[\frac{dy}{dx}\]at x = 0 is
(ax2 + cot x)(p + q cos x)