Advertisements
Advertisements
प्रश्न
x−3 (5 + 3x)
उत्तर
\[\text{ Let } u = x^{- 3} ; v = \left( 5 + 3x \right)\]
\[\text{ Then }, u = - 3 x^{- 4} ; v' = 3\]
\[\text{ Using the product rule } :\]
\[\frac{d}{dx}\left( uv \right) = uv' + vu'\]
\[\frac{d}{dx}\left[ x^3 \left( 5 + 3x \right) \right] = x^{- 3} . 3 + \left( 5 + 3x \right) \left( - 3 x^{- 4} \right)\]
\[ = 3 x^{- 3} - 15 x^{- 4} - 9 x^{- 3} \]
\[ = - 15 x^{- 4} - 6 x^{- 3}\]
APPEARS IN
संबंधित प्रश्न
Find the derivative of (5x3 + 3x – 1) (x – 1).
Find the derivative of x–3 (5 + 3x).
Find the derivative of x–4 (3 – 4x–5).
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
sin (x + a)
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`cos x/(1 + sin x)`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(sin(x + a))/ cos x`
Find the derivative of f (x) = 99x at x = 100
Find the derivative of the following function at the indicated point:
Differentiate of the following from first principle:
sin (2x − 3)
Differentiate each of the following from first principle:
\[\sqrt{\sin 2x}\]
Differentiate each of the following from first principle:
x2 sin x
Differentiate each of the following from first principle:
sin x + cos x
Differentiate each of the following from first principle:
\[e^\sqrt{ax + b}\]
tan2 x
tan 2x
\[\sqrt{\tan x}\]
\[\sin \sqrt{2x}\]
\[\cos \sqrt{x}\]
\[\tan \sqrt{x}\]
3x + x3 + 33
(2x2 + 1) (3x + 2)
\[\frac{2 x^2 + 3x + 4}{x}\]
\[\frac{( x^3 + 1)(x - 2)}{x^2}\]
\[\frac{(x + 5)(2 x^2 - 1)}{x}\]
Find the slope of the tangent to the curve f (x) = 2x6 + x4 − 1 at x = 1.
sin x cos x
(x sin x + cos x ) (ex + x2 log x)
x3 ex cos x
\[\frac{1 + \log x}{1 - \log x}\]
\[\frac{4x + 5 \sin x}{3x + 7 \cos x}\]
\[\frac{x}{1 + \tan x}\]
\[\frac{x + \cos x}{\tan x}\]
\[\frac{ax + b}{p x^2 + qx + r}\]
\[\frac{1}{a x^2 + bx + c}\]
If |x| < 1 and y = 1 + x + x2 + x3 + ..., then write the value of \[\frac{dy}{dx}\]
If f (x) = \[\log_{x_2}\]write the value of f' (x).
Mark the correct alternative in of the following:
Let f(x) = x − [x], x ∈ R, then \[f'\left( \frac{1}{2} \right)\]
Mark the correct alternative in of the following:
If \[f\left( x \right) = \frac{x - 4}{2\sqrt{x}}\]
Mark the correct alternative in of the following:
If \[y = \frac{\sin\left( x + 9 \right)}{\cos x}\] then \[\frac{dy}{dx}\] at x = 0 is