मराठी

Differentiate each of the following from first principle: x2 sin x - Mathematics

Advertisements
Advertisements

प्रश्न

Differentiate each of the following from first principle:

 x2 sin x

उत्तर

\[ \frac{d}{dx}\left( f(x) \right) = \lim_{h \to 0} \frac{f\left( x + h \right) - f\left( x \right)}{h}\]
\[ = \lim_{h \to 0} \frac{\left( x + h \right)^2 \sin \left( x + h \right) - x^2 \sin x}{h}\]
\[ = \lim_{h \to 0} \frac{\left( x^2 + h^2 + 2xh \right)\left( \sin x \cos h + \cos x \sin h \right) - x^2 \sin x}{h}\]
\[ = \lim_{h \to 0} \frac{x^2 \sin x \cos h + x^2 \cos x \sin h + h^2 \sin x \cos h + h^2 \cos x \sin h + 2xh \sin x \cos h + 2xh \cos x \sin h - x^2 \sin x}{h}\]
\[ = \lim_{h \to 0} \frac{x^2 \sin x \cos h - x^2 \sin x + x^2 \cos x \sin h + h^2 \sin x \cos h + h^2 \cos x \sin h + 2xh \sin x \cos h + 2xh \cos x \sin h}{h}\]
\[ = x^2 \sin x \lim_{h \to 0} \frac{\cos h - 1}{h} + x^2 \cos x \lim_{h \to 0} \frac{\sin h}{h} + \sin x \lim_{h \to 0} h \cos h + \cos x \lim_{h \to 0} h \sin h + 2x \sin x \lim_{h \to 0} \cosh + 2x \cos x \lim_{h \to 0} \sin h\]
\[ = x^2 \sin x \lim_{h \to 0} \frac{- 2 \sin^2 \frac{h}{2}}{\frac{h^2}{4}} \times \frac{h}{4} + x^2 \cos x \lim_{h \to 0} \frac{\sin h}{h} + \sin x \lim_{h \to 0} h \cos h + \cos x \lim_{h \to 0} h \sin h + 2x \sin x \lim_{h \to 0} \cosh + 2x \cos x \lim_{h \to 0} \sin h \left[ \because \lim_{h \to 0} \frac{\sin^2 \frac{h}{2}}{\frac{h^2}{4}} = \lim_{h \to 0} \frac{\sin \frac{h}{2}}{\frac{h}{2}} \times \lim_{h \to 0} \frac{\sin \frac{h}{2}}{\frac{h}{2}} = 1 \times 1, i . e . 1 \right]\]
\[ = - x^2 \sin x \times \lim_{h \to 0} \frac{h}{2} + x^2 \cos x \lim_{h \to 0} \frac{\sin h}{h} + \sin x \lim_{h \to 0} h \cos h + \cos x \lim_{h \to 0} h \sin h + 2x \sin x \lim_{h \to 0} \cosh + 2x \cos x \lim_{h \to 0} \sin h \]
\[ = - x^2 \sin x \times 0 + x^2 \cos x \left( 1 \right) + \sin x \left( 0 \right) + \cos x \left( 0 \right) + 2x \sin x \left( 1 \right) + 2x \cos x \left( 0 \right)\]
\[ = 0 + x^2 \cos x + 2x \sin x\]
\[ = 0 + x^2 \cos x + 2x \sin x\]
\[ = x^2 \cos x + 2x \sin x\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 30: Derivatives - Exercise 30.2 [पृष्ठ २६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 30 Derivatives
Exercise 30.2 | Q 3.04 | पृष्ठ २६

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Find the derivative of 99x at x = 100.


Find the derivative of x–4 (3 – 4x–5).


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

(x + a)


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(ax + b)/(cx + d)`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

sinn x


Find the derivative of (x) = tan x at x = 0 


\[\frac{x^2 - 1}{x}\]


 x2 + x + 3


 (x2 + 1) (x − 5)


\[\sqrt{2 x^2 + 1}\]


Differentiate  of the following from first principle:

sin (x + 1)


Differentiate  of the following from first principle:

 x sin x


Differentiate each of the following from first principle:

x2 e


\[\tan \sqrt{x}\] 


x4 − 2 sin x + 3 cos x


\[\left( x + \frac{1}{x} \right)\left( \sqrt{x} + \frac{1}{\sqrt{x}} \right)\] 


a0 xn + a1 xn−1 + a2 xn2 + ... + an1 x + an


\[\text{ If } y = \left( \frac{2 - 3 \cos x}{\sin x} \right), \text{ find } \frac{dy}{dx} at x = \frac{\pi}{4}\]


Find the rate at which the function f (x) = x4 − 2x3 + 3x2 + x + 5 changes with respect to x.


\[\text{ If } y = \frac{2 x^9}{3} - \frac{5}{7} x^7 + 6 x^3 - x, \text{ find } \frac{dy}{dx} at x = 1 .\] 


x3 e


(x3 + x2 + 1) sin 


\[\frac{x^2 + 1}{x + 1}\] 


\[\frac{e^x + \sin x}{1 + \log x}\] 


\[\frac{{10}^x}{\sin x}\] 


\[\frac{\sec x - 1}{\sec x + 1}\] 


Write the value of the derivative of f (x) = |x − 1| + |x − 3| at x = 2.


Write the value of \[\frac{d}{dx}\left( \log \left| x \right| \right)\]


If f (1) = 1, f' (1) = 2, then write the value of \[\lim_{x \to 1} \frac{\sqrt{f (x)} - 1}{\sqrt{x} - 1}\] 


Write the derivative of f (x) = 3 |2 + x| at x = −3. 


Mark the correct alternative in  of the following:

If\[f\left( x \right) = 1 - x + x^2 - x^3 + . . . - x^{99} + x^{100}\]then \[f'\left( 1 \right)\] 


Mark the correct alternative in  of the following: 

If \[y = \frac{1 + \frac{1}{x^2}}{1 - \frac{1}{x^2}}\] then \[\frac{dy}{dx} =\] 


Mark the correct alternative in  of the following:
If\[f\left( x \right) = 1 + x + \frac{x^2}{2} + . . . + \frac{x^{100}}{100}\] then \[f'\left( 1 \right)\] is equal to 


Mark the correct alternative in of the following: 

If f(x) = x sinx, then \[f'\left( \frac{\pi}{2} \right) =\] 


`(a + b sin x)/(c + d cos x)`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×