Advertisements
Advertisements
प्रश्न
Differentiate each of the following from first principle:
x2 sin x
उत्तर
\[ \frac{d}{dx}\left( f(x) \right) = \lim_{h \to 0} \frac{f\left( x + h \right) - f\left( x \right)}{h}\]
\[ = \lim_{h \to 0} \frac{\left( x + h \right)^2 \sin \left( x + h \right) - x^2 \sin x}{h}\]
\[ = \lim_{h \to 0} \frac{\left( x^2 + h^2 + 2xh \right)\left( \sin x \cos h + \cos x \sin h \right) - x^2 \sin x}{h}\]
\[ = \lim_{h \to 0} \frac{x^2 \sin x \cos h + x^2 \cos x \sin h + h^2 \sin x \cos h + h^2 \cos x \sin h + 2xh \sin x \cos h + 2xh \cos x \sin h - x^2 \sin x}{h}\]
\[ = \lim_{h \to 0} \frac{x^2 \sin x \cos h - x^2 \sin x + x^2 \cos x \sin h + h^2 \sin x \cos h + h^2 \cos x \sin h + 2xh \sin x \cos h + 2xh \cos x \sin h}{h}\]
\[ = x^2 \sin x \lim_{h \to 0} \frac{\cos h - 1}{h} + x^2 \cos x \lim_{h \to 0} \frac{\sin h}{h} + \sin x \lim_{h \to 0} h \cos h + \cos x \lim_{h \to 0} h \sin h + 2x \sin x \lim_{h \to 0} \cosh + 2x \cos x \lim_{h \to 0} \sin h\]
\[ = x^2 \sin x \lim_{h \to 0} \frac{- 2 \sin^2 \frac{h}{2}}{\frac{h^2}{4}} \times \frac{h}{4} + x^2 \cos x \lim_{h \to 0} \frac{\sin h}{h} + \sin x \lim_{h \to 0} h \cos h + \cos x \lim_{h \to 0} h \sin h + 2x \sin x \lim_{h \to 0} \cosh + 2x \cos x \lim_{h \to 0} \sin h \left[ \because \lim_{h \to 0} \frac{\sin^2 \frac{h}{2}}{\frac{h^2}{4}} = \lim_{h \to 0} \frac{\sin \frac{h}{2}}{\frac{h}{2}} \times \lim_{h \to 0} \frac{\sin \frac{h}{2}}{\frac{h}{2}} = 1 \times 1, i . e . 1 \right]\]
\[ = - x^2 \sin x \times \lim_{h \to 0} \frac{h}{2} + x^2 \cos x \lim_{h \to 0} \frac{\sin h}{h} + \sin x \lim_{h \to 0} h \cos h + \cos x \lim_{h \to 0} h \sin h + 2x \sin x \lim_{h \to 0} \cosh + 2x \cos x \lim_{h \to 0} \sin h \]
\[ = - x^2 \sin x \times 0 + x^2 \cos x \left( 1 \right) + \sin x \left( 0 \right) + \cos x \left( 0 \right) + 2x \sin x \left( 1 \right) + 2x \cos x \left( 0 \right)\]
\[ = 0 + x^2 \cos x + 2x \sin x\]
\[ = 0 + x^2 \cos x + 2x \sin x\]
\[ = x^2 \cos x + 2x \sin x\]
APPEARS IN
संबंधित प्रश्न
Find the derivative of 99x at x = 100.
Find the derivative of x–4 (3 – 4x–5).
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
(x + a)
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(ax + b)/(cx + d)`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
sinn x
Find the derivative of f (x) = tan x at x = 0
\[\frac{x^2 - 1}{x}\]
x2 + x + 3
(x2 + 1) (x − 5)
\[\sqrt{2 x^2 + 1}\]
Differentiate of the following from first principle:
sin (x + 1)
Differentiate of the following from first principle:
x sin x
Differentiate each of the following from first principle:
x2 ex
\[\tan \sqrt{x}\]
x4 − 2 sin x + 3 cos x
\[\left( x + \frac{1}{x} \right)\left( \sqrt{x} + \frac{1}{\sqrt{x}} \right)\]
a0 xn + a1 xn−1 + a2 xn−2 + ... + an−1 x + an.
\[\text{ If } y = \left( \frac{2 - 3 \cos x}{\sin x} \right), \text{ find } \frac{dy}{dx} at x = \frac{\pi}{4}\]
Find the rate at which the function f (x) = x4 − 2x3 + 3x2 + x + 5 changes with respect to x.
\[\text{ If } y = \frac{2 x^9}{3} - \frac{5}{7} x^7 + 6 x^3 - x, \text{ find } \frac{dy}{dx} at x = 1 .\]
x3 ex
(x3 + x2 + 1) sin x
\[\frac{x^2 + 1}{x + 1}\]
\[\frac{e^x + \sin x}{1 + \log x}\]
\[\frac{{10}^x}{\sin x}\]
\[\frac{\sec x - 1}{\sec x + 1}\]
Write the value of the derivative of f (x) = |x − 1| + |x − 3| at x = 2.
Write the value of \[\frac{d}{dx}\left( \log \left| x \right| \right)\]
If f (1) = 1, f' (1) = 2, then write the value of \[\lim_{x \to 1} \frac{\sqrt{f (x)} - 1}{\sqrt{x} - 1}\]
Write the derivative of f (x) = 3 |2 + x| at x = −3.
Mark the correct alternative in of the following:
If\[f\left( x \right) = 1 - x + x^2 - x^3 + . . . - x^{99} + x^{100}\]then \[f'\left( 1 \right)\]
Mark the correct alternative in of the following:
If \[y = \frac{1 + \frac{1}{x^2}}{1 - \frac{1}{x^2}}\] then \[\frac{dy}{dx} =\]
Mark the correct alternative in of the following:
If\[f\left( x \right) = 1 + x + \frac{x^2}{2} + . . . + \frac{x^{100}}{100}\] then \[f'\left( 1 \right)\] is equal to
Mark the correct alternative in of the following:
If f(x) = x sinx, then \[f'\left( \frac{\pi}{2} \right) =\]
`(a + b sin x)/(c + d cos x)`