Advertisements
Advertisements
प्रश्न
Differentiate in two ways, using product rule and otherwise, the function (1 + 2 tan x) (5 + 4 cos x). Verify that the answers are the same.
उत्तर
\[{\text{ Product rule } (1}^{st} \text{ method }):\]
\[\text { Let } u = 1 + 2 \tan x; v = 5 + 4 \cos x\]
\[\text{ Then }, u' = 2 \sec^2 x; v' = - 4 \sin x\]
\[\text{ Using the product rule }:\]
\[\frac{d}{dx}\left( uv \right) = uv' + vu'\]
\[\frac{d}{dx}\left[ \left( 1 + 2 \tan x \right)\left( 5 + 4 \cos x \right) \right] = \left( 1 + 2 \tan x \right)\left( - 4 \sin x \right) + \left( 5 + 4 \cos x \right)\left( 2 \sec^2 x \right)\]
\[ = - 4 \sin x - 8 \tan x \sin x + 10 \sec^2 x + 8 \sec x\]
\[ = - 4 \sin x + 10 \sec^2 x + \left( \frac{8}{\cos x} - \frac{8 \sin^2 x}{\cos x} \right)\]
\[ = - 4 \sin x + 10 \sec^2 x + 8\left( \frac{1 - \sin^2 x}{\cos x} \right)\]
\[ = - 4 \sin x + 10 \sec^2 x + 8\left( \frac{\cos^2 x}{\cos x} \right)\]
\[ = - 4 \sin x + 10 \sec^2 x + 8 \cos x\]
\[ 2^{nd} \text{ method }:\]
\[\left( 1 + 2 \tan x \right)\left( 5 + 4 \cos x \right) = 5 + 4 \cos x + 10 \tan x + 8 \sin x\]
\[\text{ Now, we have }:\]
\[\frac{d}{dx}\left[ \left( 1 + 2 \tan x \right)\left( 5 + 4 \cos x \right) \right] = \frac{d}{dx}\left( 5 + 4 \cos x + 10 \tan x + 8 \sin x \right)\]
\[ = - 4 \sin x + 10 \sec^2 x + 8 \cos x\]
\[\text{ Using both the methods, we get the same answer } .\]
APPEARS IN
संबंधित प्रश्न
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
sin (x + a)
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(sin x + cos x)/(sin x - cos x)`
Find the derivative of f (x) = cos x at x = 0
Find the derivative of the following function at the indicated point:
Find the derivative of the following function at the indicated point:
sin 2x at x =\[\frac{\pi}{2}\]
\[\frac{x + 1}{x + 2}\]
\[\frac{x + 2}{3x + 5}\]
k xn
(x2 + 1) (x − 5)
Differentiate of the following from first principle:
eax + b
Differentiate of the following from first principle:
sin (x + 1)
Differentiate each of the following from first principle:
\[\frac{\cos x}{x}\]
Differentiate each of the following from first principle:
\[\sqrt{\sin (3x + 1)}\]
Differentiate each of the following from first principle:
\[e^{x^2 + 1}\]
Differentiate each of the following from first principle:
\[3^{x^2}\]
tan 2x
\[\tan \sqrt{x}\]
3x + x3 + 33
log3 x + 3 loge x + 2 tan x
\[\left( x + \frac{1}{x} \right)\left( \sqrt{x} + \frac{1}{\sqrt{x}} \right)\]
\[\log\left( \frac{1}{\sqrt{x}} \right) + 5 x^a - 3 a^x + \sqrt[3]{x^2} + 6 \sqrt[4]{x^{- 3}}\]
cos (x + a)
\[\text{ If } y = \left( \frac{2 - 3 \cos x}{\sin x} \right), \text{ find } \frac{dy}{dx} at x = \frac{\pi}{4}\]
Find the slope of the tangent to the curve f (x) = 2x6 + x4 − 1 at x = 1.
x2 ex log x
xn loga x
x5 ex + x6 log x
(x sin x + cos x) (x cos x − sin x)
(1 − 2 tan x) (5 + 4 sin x)
x3 ex cos x
Differentiate each of the following functions by the product rule and the other method and verify that answer from both the methods is the same.
(3 sec x − 4 cosec x) (−2 sin x + 5 cos x)
\[\frac{x + e^x}{1 + \log x}\]
\[\frac{x \sin x}{1 + \cos x}\]
\[\frac{x^2 - x + 1}{x^2 + x + 1}\]
\[\frac{p x^2 + qx + r}{ax + b}\]
\[\frac{x}{\sin^n x}\]
If |x| < 1 and y = 1 + x + x2 + x3 + ..., then write the value of \[\frac{dy}{dx}\]
Mark the correct alternative in of the following:
If \[f\left( x \right) = x^{100} + x^{99} + . . . + x + 1\] then \[f'\left( 1 \right)\] is equal to
Mark the correct alternative in of the following:
If\[f\left( x \right) = 1 + x + \frac{x^2}{2} + . . . + \frac{x^{100}}{100}\] then \[f'\left( 1 \right)\] is equal to
Mark the correct alternative in of the following:
If f(x) = x sinx, then \[f'\left( \frac{\pi}{2} \right) =\]