Advertisements
Advertisements
प्रश्न
log3 x + 3 loge x + 2 tan x
उत्तर
\[\frac{d}{dx}\left( \log_3 x + 3 \log_e x + 2 \tan x \right)\]
\[ = \frac{d}{dx}\left( \frac{\log x}{\log 3} \right) + 3\frac{d}{dx}\left( \log_e x \right) + 2\frac{d}{dx}\left( \tan x \right)\]
\[ = \frac{1}{\log 3} . \frac{1}{x} + 3 . \frac{1}{x} + 2 \sec^2 x\]
\[ = \frac{1}{x \log 3} + \frac{3}{x} + 2 \sec^2 x\]
APPEARS IN
संबंधित प्रश्न
Find the derivative of x at x = 1.
Find the derivative of `2/(x + 1) - x^2/(3x -1)`.
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
(x + a)
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`4sqrtx - 2`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(a + bsin x)/(c + dcosx)`
Find the derivative of f (x) = cos x at x = 0
Find the derivative of the following function at the indicated point:
2 cos x at x =\[\frac{\pi}{2}\]
Find the derivative of the following function at the indicated point:
sin 2x at x =\[\frac{\pi}{2}\]
Differentiate of the following from first principle:
− x
Differentiate of the following from first principle:
(−x)−1
Differentiate of the following from first principle:
sin (x + 1)
Differentiate each of the following from first principle:
x2 ex
\[\cos \sqrt{x}\]
\[\tan \sqrt{x}\]
\[\tan \sqrt{x}\]
\[\frac{a \cos x + b \sin x + c}{\sin x}\]
a0 xn + a1 xn−1 + a2 xn−2 + ... + an−1 x + an.
Find the slope of the tangent to the curve f (x) = 2x6 + x4 − 1 at x = 1.
Find the rate at which the function f (x) = x4 − 2x3 + 3x2 + x + 5 changes with respect to x.
If for f (x) = λ x2 + μ x + 12, f' (4) = 15 and f' (2) = 11, then find λ and μ.
(x3 + x2 + 1) sin x
(x sin x + cos x) (x cos x − sin x)
(x sin x + cos x ) (ex + x2 log x)
x5 (3 − 6x−9)
x−3 (5 + 3x)
Differentiate each of the following functions by the product rule and the other method and verify that answer from both the methods is the same.
(3 sec x − 4 cosec x) (−2 sin x + 5 cos x)
\[\frac{x + e^x}{1 + \log x}\]
\[\frac{1}{a x^2 + bx + c}\]
Write the value of \[\lim_{x \to c} \frac{f(x) - f(c)}{x - c}\]
Write the value of \[\lim_{x \to a} \frac{x f (a) - a f (x)}{x - a}\]
If \[\frac{\pi}{2}\] then find \[\frac{d}{dx}\left( \sqrt{\frac{1 + \cos 2x}{2}} \right)\]
If |x| < 1 and y = 1 + x + x2 + x3 + ..., then write the value of \[\frac{dy}{dx}\]
Mark the correct alternative in of the following:
If \[f\left( x \right) = \frac{x - 4}{2\sqrt{x}}\]
Mark the correct alternative in of the following:
If f(x) = x sinx, then \[f'\left( \frac{\pi}{2} \right) =\]
Find the derivative of x2 cosx.
`(a + b sin x)/(c + d cos x)`
Let f(x) = x – [x]; ∈ R, then f'`(1/2)` is ______.