मराठी

Find the derivative of x2 – 2 at x = 10. - Mathematics

Advertisements
Advertisements

प्रश्न

Find the derivative of x2 – 2 at x = 10.

बेरीज

उत्तर

= `lim_(h → 0)(f(a + h) - f(a))/h`

∴ Derivative of x2 − 2 at x = 10

= `lim_(h → 0) ([(10 + h)^2 - 2]- (10^2 - 2))/h`

= `lim_(h → 0) (100 + 20h + h^2 - 2 - 100 + 2)/h`

= `lim_(h → 0) (20h + h^2)/h`

= `lim_(h → 0) (20 + h)`

= 20

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 13: Limits and Derivatives - Exercise 13.2 [पृष्ठ ३१२]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 11
पाठ 13 Limits and Derivatives
Exercise 13.2 | Q 1 | पृष्ठ ३१२

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Find the derivative of 99x at x = 100.


Find the derivative of x5 (3 – 6x–9).


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(ax + b)/(cx + d)`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

cosec x cot x


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

sinn x


Find the derivative of f (x) = cos x at x = 0


\[\frac{2}{x}\]


\[\frac{x^2 + 1}{x}\]


\[\frac{1}{\sqrt{3 - x}}\]


 x2 + x + 3


Differentiate  of the following from first principle:

e3x


x ex


Differentiate  of the following from first principle: 

− x


Differentiate  of the following from first principle:

sin (2x − 3)


Differentiate each of the following from first principle:

\[\frac{\sin x}{x}\]


Differentiate each of the following from first principle:

\[a^\sqrt{x}\]


tan2 


tan (2x + 1) 


\[\sin \sqrt{2x}\]


x4 − 2 sin x + 3 cos x


(2x2 + 1) (3x + 2) 


\[\frac{2 x^2 + 3x + 4}{x}\] 


\[\frac{(x + 5)(2 x^2 - 1)}{x}\]


xn tan 


(x sin x + cos x) (x cos x − sin x


x3 ex cos 


x5 (3 − 6x−9


Differentiate each of the following functions by the product rule and the other method and verify that answer from both the methods is the same.

(x + 2) (x + 3)

 


\[\frac{2x - 1}{x^2 + 1}\] 


\[\frac{e^x}{1 + x^2}\] 


\[\frac{\sqrt{a} + \sqrt{x}}{\sqrt{a} - \sqrt{x}}\] 


\[\frac{1 + 3^x}{1 - 3^x}\]


\[\frac{x^5 - \cos x}{\sin x}\] 


\[\frac{1}{a x^2 + bx + c}\] 


If f (x) =  \[\log_{x_2}\]write the value of f' (x). 


Find the derivative of 2x4 + x.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×