मराठी

X 2 + 1 X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\frac{x^2 + 1}{x}\]

उत्तर

\[ \frac{d}{dx}\left( f(x) \right) = \lim_{h \to 0} \frac{f\left( x + h \right) - f\left( x \right)}{h}\]
\[ = \lim_{h \to 0} \frac{\frac{(x + h )^2 + 1}{x + h} - \frac{x^2 + 1}{x}}{h}\]
\[ = \lim_{h \to 0} \frac{\frac{x^2 + 2xh + h^2 + 1}{x + h} - \frac{x^2 + 1}{x}}{h}\]
\[ = \lim_{h \to 0} \frac{x^3 + 2 x^2 h + h^2 x + x - x^3 - x^2 h - x - h}{xh(x + h)}\]
\[ = \lim_{h \to 0} \frac{x^2 h + h^2 x - h}{x(x + h)}\]
\[ = \lim_{h \to 0} \frac{h( x^2 + hx - 1)}{xh(x + h)}\]
\[ = \lim_{h \to 0} \frac{x^2 + hx - 1}{x(x + h)}\]
\[ = \frac{x^2 - 1}{x^2}\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 30: Derivatives - Exercise 30.2 [पृष्ठ २५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 30 Derivatives
Exercise 30.2 | Q 1.04 | पृष्ठ २५

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Find the derivative of x2 – 2 at x = 10.


Find the derivative of x5 (3 – 6x–9).


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

(x + a)


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(a + bsin x)/(c + dcosx)`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(sin(x + a))/ cos x`


Find the derivative of f (x) = x2 − 2 at x = 10


\[\frac{x^2 - 1}{x}\]


\[\frac{x + 2}{3x + 5}\]


\[\frac{1}{\sqrt{3 - x}}\]


Differentiate  of the following from first principle:

\[\cos\left( x - \frac{\pi}{8} \right)\]


Differentiate  of the following from first principle:

sin (2x − 3)


Differentiate each of the following from first principle:

\[\sqrt{\sin 2x}\] 


Differentiate each of the following from first principle:

\[\sqrt{\sin (3x + 1)}\]


Differentiate each of the following from first principle: 

sin x + cos x


tan2 


\[\cos \sqrt{x}\]


\[\tan \sqrt{x}\]


\[\tan \sqrt{x}\] 


2 sec x + 3 cot x − 4 tan x


\[If y = \sqrt{\frac{x}{a}} + \sqrt{\frac{a}{x}}, \text{ prove that } 2xy\frac{dy}{dx} = \left( \frac{x}{a} - \frac{a}{x} \right)\]  


x3 e


(x3 + x2 + 1) sin 


x2 sin x log 


(x sin x + cos x ) (ex + x2 log x


logx2 x


x4 (5 sin x − 3 cos x)


(ax + b)n (cx d)


\[\frac{e^x}{1 + x^2}\] 


\[\frac{2^x \cot x}{\sqrt{x}}\] 


\[\frac{1 + \log x}{1 - \log x}\] 


\[\frac{4x + 5 \sin x}{3x + 7 \cos x}\]


\[\frac{a + b \sin x}{c + d \cos x}\] 


\[\frac{x}{\sin^n x}\]


\[\frac{ax + b}{p x^2 + qx + r}\] 


Write the value of \[\frac{d}{dx}\left( \log \left| x \right| \right)\]


If |x| < 1 and y = 1 + x + x2 + x3 + ..., then write the value of \[\frac{dy}{dx}\] 


Mark the correct alternative in each of the following: 

If\[f\left( x \right) = \frac{x^n - a^n}{x - a}\] then \[f'\left( a \right)\] 


Let f(x) = x – [x]; ∈ R, then f'`(1/2)` is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×