मराठी

Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers): cosec x cot x - Mathematics

Advertisements
Advertisements

प्रश्न

Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

cosec x cot x

बेरीज

उत्तर

Let f(x) = cosec x cot x

By Leibnitz product rule,

f'(x) = cosec x (cot x)' + cot x (cosec x)'      ...(1)

Let f (x) = cot x. Accordingly, f(x + h) = cot (x + h)

By first principle,

Let f1(x) = `lim_(h->0) (f_1(x + h)− f_1(x))/h`

= `lim_(h->0) ((cot (x + h) -cot x)/h)`

= `lim_(h->0) (cos (x + h)/(sin (x + h))-(cos x)/(sin x))`

= `lim_(h->0)1/h[(sin x cos (x + h) - cos x sin (x + h))/(sin x sin (x + h))]`

= `lim_(h->0)1/h[sin (x - h - h)/(sin x sin (x + h))]`

= `1/(sin x) lim_(h->0)1/h[sin (- h)/(sin (x + h))]`

= `1/(sin x) (lim_(h->0) (sin h)/h) (lim_(h->0) 1/(sin (x + h)))`

= `-1/(sin x).1 (1/(sin (x + 0)))`

= `(-1)/(sin^2 x)`

= - cosec2 x

∴ (cot x)' = - cosec2 x       ...(2)

Now, let f2(x) = cosec x. Accordingly, f2(x + h) = cosec(x + h)

By first principle,

f2(x)' = `lim_(h->0) (f_2 (x + h) - f_2 (x))/h`

= `lim_(h->0) 1/h [cosec (x + h) - cosec x]`

= `lim_(h->0)1/h [1/(sin (x + h)) - 1/(sin x)]`

= `lim_(h->0)1/h [(sin x - sin (x + h))/(sin x sin (x + h))]`

= `1/(sin x). lim_(h->0)1/h[(2 cos  ((x + x + h)/2) sin  ((x - x - h)/2))/(sin (x + h))]`

= `1/(sin x). lim_(h->0)1/h [(2 cos  ((2x + h)/2) sin  ((-h)/2))/(sin (x + h))]`

 

= `1/(sin x). lim_(h->0)1/h [(2 cos  ((2x + h)/2) sin  ((-h)/2))/(sin (x + h))]`

= `1/sin x. lim_(h->0) [-sin(h/2)/((h/2)) (cos ((2x +h)/2))/(sin (x + h))]`

= `(-1)/(sin x). lim_(h->0) sin(h/2)/((h/2)) lim_(h->0) (cos  ((2x + h)/2))/(sin (x + h))`

= `(-1)/ (sin x).1 (cos((2x + 0)/2))/(sin (x + 0)`

= `(-1)/(sin x).(cos x)/(sin x)`

= -cosecx . cot x

∴ (cosec x) = -cosec x. cot x      ...(3)

From (1), (2), and (3), we obtain

f'(x) = cosec x(-cosec2x) + cot x (-cosec x cot x)

= -cosec3 x-cot2 x cosec x

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 13: Limits and Derivatives - Miscellaneous Exercise [पृष्ठ ३१७]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 11
पाठ 13 Limits and Derivatives
Miscellaneous Exercise | Q 15 | पृष्ठ ३१७

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Find the derivative of `2/(x + 1) - x^2/(3x -1)`.


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(ax + b)/(px^2 + qx + r)`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

(ax + b)n (cx + d)m


\[\frac{2}{x}\]


Differentiate  of the following from first principle:

e3x


Differentiate  of the following from first principle:

\[\cos\left( x - \frac{\pi}{8} \right)\]


Differentiate  of the following from first principle:

 x sin x


Differentiate of the following from first principle:

 x cos x


Differentiate each of the following from first principle:

\[\sqrt{\sin (3x + 1)}\]


Differentiate each of the following from first principle:

\[e^\sqrt{ax + b}\]


Differentiate each of the following from first principle:

\[3^{x^2}\]


tan2 


\[\tan \sqrt{x}\] 


\[\frac{( x^3 + 1)(x - 2)}{x^2}\] 


\[\frac{(x + 5)(2 x^2 - 1)}{x}\]


For the function \[f(x) = \frac{x^{100}}{100} + \frac{x^{99}}{99} + . . . + \frac{x^2}{2} + x + 1 .\]

 

x3 e


x5 ex + x6 log 


(1 +x2) cos x


x3 ex cos 


\[\frac{x^2 \cos\frac{\pi}{4}}{\sin x}\] 


x4 (5 sin x − 3 cos x)


x4 (3 − 4x−5)


Differentiate in two ways, using product rule and otherwise, the function (1 + 2 tan x) (5 + 4 cos x). Verify that the answers are the same. 


\[\frac{\sin x - x \cos x}{x \sin x + \cos x}\]


\[\frac{\sqrt{a} + \sqrt{x}}{\sqrt{a} - \sqrt{x}}\] 


\[\frac{1 + 3^x}{1 - 3^x}\]


If f (x) = \[\frac{x^2}{\left| x \right|},\text{ write }\frac{d}{dx}\left( f (x) \right)\] 


Write the derivative of f (x) = 3 |2 + x| at x = −3. 


If |x| < 1 and y = 1 + x + x2 + x3 + ..., then write the value of \[\frac{dy}{dx}\] 


If f (x) =  \[\log_{x_2}\]write the value of f' (x). 


Mark the correct alternative in of the following:

Let f(x) = x − [x], x ∈ R, then \[f'\left( \frac{1}{2} \right)\]


Mark the correct alternative in of the following: 

If \[f\left( x \right) = \frac{x - 4}{2\sqrt{x}}\]

 


Mark the correct alternative in  of the following:
If \[y = \frac{\sin\left( x + 9 \right)}{\cos x}\] then \[\frac{dy}{dx}\] at x = 0 is 


Find the derivative of 2x4 + x.


`(a + b sin x)/(c + d cos x)`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×