मराठी

( √ X + 1 √ X ) 3 - Mathematics

Advertisements
Advertisements

प्रश्न

\[\left( \sqrt{x} + \frac{1}{\sqrt{x}} \right)^3\] 

उत्तर

\[\frac{d}{dx} \left( \sqrt{x} + \frac{1}{\sqrt{x}} \right)^3 \]
\[ = \frac{d}{dx}\left[ \left( \sqrt{x} \right)^3 + 3 \left( \sqrt{x} \right)^2 \left( \frac{1}{\sqrt{x}} \right) + 3\left( \sqrt{x} \right) \left( \frac{1}{\sqrt{x}} \right)^2 + \left( \frac{1}{\sqrt{x}} \right)^3 \right]\]
\[ = \frac{d}{dx}\left( x^\frac{3}{2} \right) + 3\frac{d}{dx}\left( x^\frac{1}{2} \right) + 3\frac{d}{dx}\left( x^\frac{- 1}{2} \right) + \frac{d}{dx}\left( x^\frac{- 3}{2} \right)\]
\[ = \frac{3}{2} x^\frac{3}{2} - 1 + 3 . \frac{1}{2} x^\frac{1}{2} - 1 + 3\left( \frac{- 1}{2} \right) x^\frac{- 1}{2} - 1 + \left( \frac{- 3}{2} \right) x^\frac{- 3}{2} - 1 \]
\[ = \frac{3}{2} x^\frac{1}{2} + \frac{3}{2} x^\frac{- 1}{2} - \frac{3}{2} x^\frac{- 3}{2} - \frac{3}{2} x^\frac{- 5}{2}\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 30: Derivatives - Exercise 30.3 [पृष्ठ ३४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 30 Derivatives
Exercise 30.3 | Q 8 | पृष्ठ ३४

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

For the function

f(x) = `x^100/100 + x^99/99 + ...+ x^2/2 + x + 1`

Prove that f'(1) = 100 f'(0)


Find the derivative of x–3 (5 + 3x).


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

(ax + b) (cx + d)2


Find the derivative of f (x) = 3x at x = 2 


Find the derivative of f (x) = cos x at x = 0


Find the derivative of the following function at the indicated point: 

 sin 2x at x =\[\frac{\pi}{2}\]


Differentiate  of the following from first principle:

sin (x + 1)


Differentiate each of the following from first principle:

\[\frac{\sin x}{x}\]


Differentiate each of the following from first principle:

 x2 sin x


\[\tan \sqrt{x}\]


(2x2 + 1) (3x + 2) 


Find the slope of the tangent to the curve (x) = 2x6 + x4 − 1 at x = 1.


Find the rate at which the function f (x) = x4 − 2x3 + 3x2 + x + 5 changes with respect to x.


x3 sin 


(1 − 2 tan x) (5 + 4 sin x)


(1 +x2) cos x


sin2 


logx2 x


\[\frac{x^2 \cos\frac{\pi}{4}}{\sin x}\] 


Differentiate each of the following functions by the product rule and the other method and verify that answer from both the methods is the same.

(3 sec x − 4 cosec x) (−2 sin x + 5 cos x)


\[\frac{x^2 + 1}{x + 1}\] 


\[\frac{x + e^x}{1 + \log x}\] 


\[\frac{e^x - \tan x}{\cot x - x^n}\] 


\[\frac{x}{1 + \tan x}\] 


\[\frac{x^2 - x + 1}{x^2 + x + 1}\] 


\[\frac{p x^2 + qx + r}{ax + b}\]


\[\frac{\sec x - 1}{\sec x + 1}\] 


\[\frac{ax + b}{p x^2 + qx + r}\] 


If \[\frac{\pi}{2}\] then find \[\frac{d}{dx}\left( \sqrt{\frac{1 + \cos 2x}{2}} \right)\]


If f (x) = \[\frac{x^2}{\left| x \right|},\text{ write }\frac{d}{dx}\left( f (x) \right)\] 


Write the value of \[\frac{d}{dx}\left( \log \left| x \right| \right)\]


If |x| < 1 and y = 1 + x + x2 + x3 + ..., then write the value of \[\frac{dy}{dx}\] 


Mark the correct alternative in  of the following:

If\[f\left( x \right) = 1 - x + x^2 - x^3 + . . . - x^{99} + x^{100}\]then \[f'\left( 1 \right)\] 


Mark the correct alternative in  of the following:
If \[y = \frac{\sin\left( x + 9 \right)}{\cos x}\] then \[\frac{dy}{dx}\] at x = 0 is 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×