Advertisements
Advertisements
प्रश्न
\[\left( \sqrt{x} + \frac{1}{\sqrt{x}} \right)^3\]
उत्तर
\[\frac{d}{dx} \left( \sqrt{x} + \frac{1}{\sqrt{x}} \right)^3 \]
\[ = \frac{d}{dx}\left[ \left( \sqrt{x} \right)^3 + 3 \left( \sqrt{x} \right)^2 \left( \frac{1}{\sqrt{x}} \right) + 3\left( \sqrt{x} \right) \left( \frac{1}{\sqrt{x}} \right)^2 + \left( \frac{1}{\sqrt{x}} \right)^3 \right]\]
\[ = \frac{d}{dx}\left( x^\frac{3}{2} \right) + 3\frac{d}{dx}\left( x^\frac{1}{2} \right) + 3\frac{d}{dx}\left( x^\frac{- 1}{2} \right) + \frac{d}{dx}\left( x^\frac{- 3}{2} \right)\]
\[ = \frac{3}{2} x^\frac{3}{2} - 1 + 3 . \frac{1}{2} x^\frac{1}{2} - 1 + 3\left( \frac{- 1}{2} \right) x^\frac{- 1}{2} - 1 + \left( \frac{- 3}{2} \right) x^\frac{- 3}{2} - 1 \]
\[ = \frac{3}{2} x^\frac{1}{2} + \frac{3}{2} x^\frac{- 1}{2} - \frac{3}{2} x^\frac{- 3}{2} - \frac{3}{2} x^\frac{- 5}{2}\]
APPEARS IN
संबंधित प्रश्न
For the function
f(x) = `x^100/100 + x^99/99 + ...+ x^2/2 + x + 1`
Prove that f'(1) = 100 f'(0)
Find the derivative of x–3 (5 + 3x).
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
(ax + b) (cx + d)2
Find the derivative of f (x) = 3x at x = 2
Find the derivative of f (x) = cos x at x = 0
Find the derivative of the following function at the indicated point:
sin 2x at x =\[\frac{\pi}{2}\]
Differentiate of the following from first principle:
sin (x + 1)
Differentiate each of the following from first principle:
\[\frac{\sin x}{x}\]
Differentiate each of the following from first principle:
x2 sin x
\[\tan \sqrt{x}\]
(2x2 + 1) (3x + 2)
Find the slope of the tangent to the curve f (x) = 2x6 + x4 − 1 at x = 1.
Find the rate at which the function f (x) = x4 − 2x3 + 3x2 + x + 5 changes with respect to x.
x3 sin x
(1 − 2 tan x) (5 + 4 sin x)
(1 +x2) cos x
sin2 x
logx2 x
\[\frac{x^2 \cos\frac{\pi}{4}}{\sin x}\]
Differentiate each of the following functions by the product rule and the other method and verify that answer from both the methods is the same.
(3 sec x − 4 cosec x) (−2 sin x + 5 cos x)
\[\frac{x^2 + 1}{x + 1}\]
\[\frac{x + e^x}{1 + \log x}\]
\[\frac{e^x - \tan x}{\cot x - x^n}\]
\[\frac{x}{1 + \tan x}\]
\[\frac{x^2 - x + 1}{x^2 + x + 1}\]
\[\frac{p x^2 + qx + r}{ax + b}\]
\[\frac{\sec x - 1}{\sec x + 1}\]
\[\frac{ax + b}{p x^2 + qx + r}\]
If \[\frac{\pi}{2}\] then find \[\frac{d}{dx}\left( \sqrt{\frac{1 + \cos 2x}{2}} \right)\]
If f (x) = \[\frac{x^2}{\left| x \right|},\text{ write }\frac{d}{dx}\left( f (x) \right)\]
Write the value of \[\frac{d}{dx}\left( \log \left| x \right| \right)\]
If |x| < 1 and y = 1 + x + x2 + x3 + ..., then write the value of \[\frac{dy}{dx}\]
Mark the correct alternative in of the following:
If\[f\left( x \right) = 1 - x + x^2 - x^3 + . . . - x^{99} + x^{100}\]then \[f'\left( 1 \right)\]
Mark the correct alternative in of the following:
If \[y = \frac{\sin\left( x + 9 \right)}{\cos x}\] then \[\frac{dy}{dx}\] at x = 0 is