Advertisements
Advertisements
Question
\[\frac{1}{a x^2 + bx + c}\]
Solution
\[\frac{d}{dx}\left( \frac{1}{a x^2 + bx + c} \right)\]
\[ = \frac{d}{dx} \left( a x^2 + bx + c \right)^{- 1} \]
\[ = \left( - 1 \right) \left( a x^2 + bx + c \right)^{- 2} \frac{d}{dx}\left( a x^2 + bx + c \right) (\text{ Using the chain rule })\]
\[ = \left( - 1 \right) \left( a x^2 + bx + c \right)^{- 2} \left( 2ax + b \right)\]
\[ = \frac{- \left( 2ax + b \right)}{\left( a x^2 + bx + c \right)^2}\]
APPEARS IN
RELATED QUESTIONS
Find the derivative of (5x3 + 3x – 1) (x – 1).
Find the derivative of x–3 (5 + 3x).
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
(ax + b)n (cx + d)m
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
sin (x + a)
Find the derivative of the following function at the indicated point:
sin x at x =\[\frac{\pi}{2}\]
\[\frac{1}{x^3}\]
\[\frac{1}{\sqrt{3 - x}}\]
Differentiate each of the following from first principle:
e−x
Differentiate of the following from first principle:
(−x)−1
Differentiate of the following from first principle:
sin (x + 1)
Differentiate each of the following from first principle:
\[\sqrt{\sin (3x + 1)}\]
Differentiate each of the following from first principle:
sin x + cos x
Differentiate each of the following from first principle:
\[3^{x^2}\]
\[\cos \sqrt{x}\]
ex log a + ea long x + ea log a
Find the slope of the tangent to the curve f (x) = 2x6 + x4 − 1 at x = 1.
\[\frac{2^x \cot x}{\sqrt{x}}\]
(x sin x + cos x) (x cos x − sin x)
(1 − 2 tan x) (5 + 4 sin x)
logx2 x
(2x2 − 3) sin x
Differentiate each of the following functions by the product rule and the other method and verify that answer from both the methods is the same.
(3x2 + 2)2
Differentiate each of the following functions by the product rule and the other method and verify that answer from both the methods is the same.
(x + 2) (x + 3)
\[\frac{e^x - \tan x}{\cot x - x^n}\]
\[\frac{e^x}{1 + x^2}\]
\[\frac{3^x}{x + \tan x}\]
If \[\frac{\pi}{2}\] then find \[\frac{d}{dx}\left( \sqrt{\frac{1 + \cos 2x}{2}} \right)\]
Write the value of \[\frac{d}{dx}\left( x \left| x \right| \right)\]
Write the value of \[\frac{d}{dx} \left\{ \left( x + \left| x \right| \right) \left| x \right| \right\}\]
Write the value of \[\frac{d}{dx}\left( \log \left| x \right| \right)\]
If f (1) = 1, f' (1) = 2, then write the value of \[\lim_{x \to 1} \frac{\sqrt{f (x)} - 1}{\sqrt{x} - 1}\]
Mark the correct alternative in of the following:
Let f(x) = x − [x], x ∈ R, then \[f'\left( \frac{1}{2} \right)\]
Mark the correct alternative in of the following:
If \[f\left( x \right) = x^{100} + x^{99} + . . . + x + 1\] then \[f'\left( 1 \right)\] is equal to
Mark the correct alternative in each of the following:
If\[f\left( x \right) = \frac{x^n - a^n}{x - a}\] then \[f'\left( a \right)\]
Find the derivative of 2x4 + x.
Find the derivative of x2 cosx.
Find the derivative of f(x) = tan(ax + b), by first principle.
Let f(x) = x – [x]; ∈ R, then f'`(1/2)` is ______.