हिंदी

1 a X 2 + B X + C - Mathematics

Advertisements
Advertisements

प्रश्न

\[\frac{1}{a x^2 + bx + c}\] 

उत्तर

\[\frac{d}{dx}\left( \frac{1}{a x^2 + bx + c} \right)\]
\[ = \frac{d}{dx} \left( a x^2 + bx + c \right)^{- 1} \]
\[ = \left( - 1 \right) \left( a x^2 + bx + c \right)^{- 2} \frac{d}{dx}\left( a x^2 + bx + c \right) (\text{ Using the chain rule })\]
\[ = \left( - 1 \right) \left( a x^2 + bx + c \right)^{- 2} \left( 2ax + b \right)\]
\[ = \frac{- \left( 2ax + b \right)}{\left( a x^2 + bx + c \right)^2}\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 30: Derivatives - Exercise 30.5 [पृष्ठ ४४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 30 Derivatives
Exercise 30.5 | Q 7 | पृष्ठ ४४

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Find the derivative of x2 – 2 at x = 10.


Find the derivative of x–4 (3 – 4x–5).


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

sinn x


\[\frac{2}{x}\]


\[\frac{1}{\sqrt{x}}\]


\[\frac{x^2 + 1}{x}\]


\[\frac{x + 2}{3x + 5}\]


k xn


Differentiate  of the following from first principle: 

− x


Differentiate of the following from first principle:

(−x)−1


Differentiate of the following from first principle:

 x cos x


Differentiate each of the following from first principle:

\[\sqrt{\sin 2x}\] 


Differentiate each of the following from first principle:

\[\sqrt{\sin (3x + 1)}\]


Differentiate each of the following from first principle:

\[e^\sqrt{ax + b}\]


 tan 2


\[\left( x + \frac{1}{x} \right)\left( \sqrt{x} + \frac{1}{\sqrt{x}} \right)\] 


\[\frac{( x^3 + 1)(x - 2)}{x^2}\] 


\[\frac{a \cos x + b \sin x + c}{\sin x}\]


\[\frac{(x + 5)(2 x^2 - 1)}{x}\]


\[\text{ If } y = \left( \frac{2 - 3 \cos x}{\sin x} \right), \text{ find } \frac{dy}{dx} at x = \frac{\pi}{4}\]


Find the slope of the tangent to the curve (x) = 2x6 + x4 − 1 at x = 1.


\[\text{ If } y = \frac{2 x^9}{3} - \frac{5}{7} x^7 + 6 x^3 - x, \text{ find } \frac{dy}{dx} at x = 1 .\] 


x3 sin 


xn tan 


xn loga 


x2 sin x log 


x−3 (5 + 3x


(ax + b) (a + d)2


\[\frac{x^2 + 1}{x + 1}\] 


\[\frac{x + e^x}{1 + \log x}\] 


\[\frac{x^2 - x + 1}{x^2 + x + 1}\] 


\[\frac{x^5 - \cos x}{\sin x}\] 


If x < 2, then write the value of \[\frac{d}{dx}(\sqrt{x^2 - 4x + 4)}\] 


If f (x) = \[\frac{x^2}{\left| x \right|},\text{ write }\frac{d}{dx}\left( f (x) \right)\] 


Mark the correct alternative in of the following: 

If \[f\left( x \right) = \frac{x - 4}{2\sqrt{x}}\]

 


Mark the correct alternative in of the following:

If \[y = \sqrt{x} + \frac{1}{\sqrt{x}}\] then \[\frac{dy}{dx}\] at x = 1 is


Mark the correct alternative in each of the following:
If\[y = \frac{\sin x + \cos x}{\sin x - \cos x}\] then \[\frac{dy}{dx}\]at x = 0 is 


Find the derivative of f(x) = tan(ax + b), by first principle.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×