Advertisements
Advertisements
प्रश्न
\[\frac{1}{a x^2 + bx + c}\]
उत्तर
\[\frac{d}{dx}\left( \frac{1}{a x^2 + bx + c} \right)\]
\[ = \frac{d}{dx} \left( a x^2 + bx + c \right)^{- 1} \]
\[ = \left( - 1 \right) \left( a x^2 + bx + c \right)^{- 2} \frac{d}{dx}\left( a x^2 + bx + c \right) (\text{ Using the chain rule })\]
\[ = \left( - 1 \right) \left( a x^2 + bx + c \right)^{- 2} \left( 2ax + b \right)\]
\[ = \frac{- \left( 2ax + b \right)}{\left( a x^2 + bx + c \right)^2}\]
APPEARS IN
संबंधित प्रश्न
Find the derivative of x2 – 2 at x = 10.
Find the derivative of x–4 (3 – 4x–5).
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
sinn x
\[\frac{2}{x}\]
\[\frac{1}{\sqrt{x}}\]
\[\frac{x^2 + 1}{x}\]
\[\frac{x + 2}{3x + 5}\]
k xn
Differentiate of the following from first principle:
− x
Differentiate of the following from first principle:
(−x)−1
Differentiate of the following from first principle:
x cos x
Differentiate each of the following from first principle:
\[\sqrt{\sin 2x}\]
Differentiate each of the following from first principle:
\[\sqrt{\sin (3x + 1)}\]
Differentiate each of the following from first principle:
\[e^\sqrt{ax + b}\]
tan 2x
\[\left( x + \frac{1}{x} \right)\left( \sqrt{x} + \frac{1}{\sqrt{x}} \right)\]
\[\frac{( x^3 + 1)(x - 2)}{x^2}\]
\[\frac{a \cos x + b \sin x + c}{\sin x}\]
\[\frac{(x + 5)(2 x^2 - 1)}{x}\]
\[\text{ If } y = \left( \frac{2 - 3 \cos x}{\sin x} \right), \text{ find } \frac{dy}{dx} at x = \frac{\pi}{4}\]
Find the slope of the tangent to the curve f (x) = 2x6 + x4 − 1 at x = 1.
\[\text{ If } y = \frac{2 x^9}{3} - \frac{5}{7} x^7 + 6 x^3 - x, \text{ find } \frac{dy}{dx} at x = 1 .\]
x3 sin x
xn tan x
xn loga x
x2 sin x log x
x−3 (5 + 3x)
(ax + b) (a + d)2
\[\frac{x^2 + 1}{x + 1}\]
\[\frac{x + e^x}{1 + \log x}\]
\[\frac{x^2 - x + 1}{x^2 + x + 1}\]
\[\frac{x^5 - \cos x}{\sin x}\]
If x < 2, then write the value of \[\frac{d}{dx}(\sqrt{x^2 - 4x + 4)}\]
If f (x) = \[\frac{x^2}{\left| x \right|},\text{ write }\frac{d}{dx}\left( f (x) \right)\]
Mark the correct alternative in of the following:
If \[f\left( x \right) = \frac{x - 4}{2\sqrt{x}}\]
Mark the correct alternative in of the following:
If \[y = \sqrt{x} + \frac{1}{\sqrt{x}}\] then \[\frac{dy}{dx}\] at x = 1 is
Mark the correct alternative in each of the following:
If\[y = \frac{\sin x + \cos x}{\sin x - \cos x}\] then \[\frac{dy}{dx}\]at x = 0 is
Find the derivative of f(x) = tan(ax + b), by first principle.