हिंदी

Differentiate Each of the Following from First Principle: √ Sin 2 X - Mathematics

Advertisements
Advertisements

प्रश्न

Differentiate each of the following from first principle:

\[\sqrt{\sin 2x}\] 

उत्तर

\[\frac{d}{dx}\left( f(x) \right) = \lim_{h \to 0} \frac{f\left( x + h \right) - f\left( x \right)}{h}\]
\[ = \lim_{h \to 0} \frac{\sqrt{\sin \left( 2x + 2h \right)} - \sqrt{\sin 2x}}{h} \times \frac{\sqrt{\sin \left( 2x + 2h \right)} + \sqrt{\sin 2x}}{\sqrt{\sin \left( 2x + 2h \right)} + \sqrt{\sin 2x}}\]
\[ = \lim_{h \to 0} \frac{\sin \left( 2x + 2h \right) - \sin 2x}{h \left( \sqrt{\sin \left( 2x + 2h \right)} + \sqrt{\sin 2x} \right)}\]
\[\text{ We have }:\]
\[sin C-sin D= 2 cos\left( \frac{C + D}{2} \right)\sin\left( \frac{C - D}{2} \right)\]
\[ = \lim_{h \to 0} \frac{2 \cos \left( \frac{2x + 2h + 2x}{2} \right) \sin \left( \frac{2x + 2h - 2x}{2} \right)}{h \left( \sqrt{\sin \left( 2x + 2h \right)} + \sqrt{\sin 2x} \right)}\]
\[ = \lim_{h \to 0} \frac{2 \cos \left( 2x + h \right) \sin h}{h \left( \sqrt{\sin \left( 2x + 2h \right)} + \sqrt{\sin 2x} \right)}\]
\[ = \lim_{h \to 0} 2 \cos \left( 2x + h \right) \lim_{h \to 0} \frac{\sin h}{h} \lim_{h \to 0} \frac{1}{\left( \sqrt{\sin \left( 2x + 2h \right)} + \sqrt{\sin 2x} \right)} \]
\[ = 2 \cos 2x \left( 1 \right) \frac{1}{\sqrt{\sin 2x} + \sqrt{\sin 2x}}\]
\[ = \frac{2 \cos 2x}{2\sqrt{\sin 2x}}\]
\[ = \frac{\cos 2x}{\sqrt{\sin 2x}}\]
\[\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 30: Derivatives - Exercise 30.2 [पृष्ठ २६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 30 Derivatives
Exercise 30.2 | Q 3.01 | पृष्ठ २६

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Find the derivative of x2 – 2 at x = 10.


Find the derivative of `2/(x + 1) - x^2/(3x -1)`.


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

(x + a)


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(ax + b)/(cx + d)`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

(ax + b)n (cx + d)m


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(a + bsin x)/(c + dcosx)`


Find the derivative of f (x) = cos x at x = 0


Find the derivative of the following function at the indicated point: 

 sin x at x =\[\frac{\pi}{2}\]

 


k xn


Differentiate  of the following from first principle:

 eax + b


Differentiate  of the following from first principle:

 x sin x


Differentiate of the following from first principle:

 x cos x


Differentiate each of the following from first principle: 

\[\frac{\cos x}{x}\]


\[\sqrt{\tan x}\]


3x + x3 + 33


ex log a + ea long x + ea log a


For the function \[f(x) = \frac{x^{100}}{100} + \frac{x^{99}}{99} + . . . + \frac{x^2}{2} + x + 1 .\]

 

sin x cos x


\[\frac{2^x \cot x}{\sqrt{x}}\] 


(x sin x + cos x) (x cos x − sin x


sin2 


\[\frac{\sqrt{a} + \sqrt{x}}{\sqrt{a} - \sqrt{x}}\] 


\[\frac{x}{1 + \tan x}\] 


\[\frac{a + b \sin x}{c + d \cos x}\] 


\[\frac{p x^2 + qx + r}{ax + b}\]


\[\frac{\sec x - 1}{\sec x + 1}\] 


\[\frac{x}{\sin^n x}\]


Write the value of the derivative of f (x) = |x − 1| + |x − 3| at x = 2.


If f (x) = \[\frac{x^2}{\left| x \right|},\text{ write }\frac{d}{dx}\left( f (x) \right)\] 


If f (1) = 1, f' (1) = 2, then write the value of \[\lim_{x \to 1} \frac{\sqrt{f (x)} - 1}{\sqrt{x} - 1}\] 


Write the derivative of f (x) = 3 |2 + x| at x = −3. 


Mark the correct alternative in  of the following: 

If \[y = \frac{1 + \frac{1}{x^2}}{1 - \frac{1}{x^2}}\] then \[\frac{dy}{dx} =\] 


`(a + b sin x)/(c + d cos x)`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×