Advertisements
Advertisements
प्रश्न
Differentiate each of the following from first principle:
\[\frac{\sin x}{x}\]
उत्तर
\[\frac{d}{dx}\left( f(x) \right) = \lim_{h \to 0} \frac{f\left( x + h \right) - f\left( x \right)}{h}\]
\[ = \lim_{h \to 0} \frac{\frac{\sin \left( x + h \right)}{x + h} - \frac{\sin x}{x}}{h}\]
\[ = \lim_{h \to 0} \frac{x \sin \left( x + h \right) - \left( x + h \right) \sin x}{h x \left( x + h \right)}\]
\[ = \lim_{h \to 0} \frac{x \left( \sin x \cos h + \cos x \sin h \right) - x \sin x - h \sin x}{h x \left( x + h \right)}\]
\[ = \lim_{h \to 0} \frac{x \sin x \cos h + x \cos x \sin h - x \sin x - h \sin x}{h x \left( x + h \right)}\]
\[ = \lim_{h \to 0} \frac{x \sin x \cos h - x \sin x + x \cos x \sin h - h \sin x}{h x \left( x + h \right)}\]
\[ = x \sin x \lim_{h \to 0} \frac{\cos h - 1}{h} + \frac{x \cos x}{x} \lim_{h \to 0} \frac{\sin h}{h} \lim_{h \to 0} \frac{1}{x + h} - \frac{\sin x}{x} \lim_{h \to 0} \frac{1}{x + h}\]
\[ = x \sin x \lim_{h \to 0} \frac{- 2 \sin^2 \frac{h}{2}}{h} + \frac{x \cos x}{x} \lim_{h \to 0} \frac{\sin h}{h} \lim_{h \to 0} \frac{1}{x + h} - \frac{\sin x}{x} \lim_{h \to 0} \frac{1}{x + h}\]
\[ = x \sin x \lim_{h \to 0} \frac{- 2 \sin^2 \frac{h}{2}}{\frac{h^2}{4}} \times \frac{h}{4} + \frac{x \cos x}{x} \lim_{h \to 0} \frac{\sin h}{h} \lim_{h \to 0} \frac{1}{x + h} - \frac{\sin x}{x} \lim_{h \to 0} \frac{1}{x + h}\]
\[ = - x \sin x \times \lim_{h \to 0} \frac{h}{2} + \frac{x \cos x}{x} \lim_{h \to 0} \frac{\sin h}{h} \lim_{h \to 0} \frac{1}{x + h} - \frac{\sin x}{x} \lim_{h \to 0} \frac{1}{x + h}\]
\[ = - x \sin x \left( \frac{1}{2} \right) \left( 0 \right) + \frac{cos x}{x} - \frac{sin x}{x^2}\]
\[ = \frac{\cos x}{x} - \frac{\sin x}{x^2}\]
\[ = \frac{x \cos x - \sin x}{x^2}\]
APPEARS IN
संबंधित प्रश्न
Find the derivative of x at x = 1.
For the function
f(x) = `x^100/100 + x^99/99 + ...+ x^2/2 + x + 1`
Prove that f'(1) = 100 f'(0)
Find the derivative of x–4 (3 – 4x–5).
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(ax + b)/(cx + d)`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`4sqrtx - 2`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(sec x - 1)/(sec x + 1)`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(a + bsin x)/(c + dcosx)`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(sin(x + a))/ cos x`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
x4 (5 sin x – 3 cos x)
Find the derivative of the following function at the indicated point:
sin x at x =\[\frac{\pi}{2}\]
\[\frac{x^2 - 1}{x}\]
k xn
\[\frac{1}{\sqrt{3 - x}}\]
Differentiate of the following from first principle:
x cos x
Differentiate each of the following from first principle:
x2 sin x
Differentiate each of the following from first principle:
x2 ex
Differentiate each of the following from first principle:
\[a^\sqrt{x}\]
\[\sqrt{\tan x}\]
\[\cos \sqrt{x}\]
\[\tan \sqrt{x}\]
\[\left( x + \frac{1}{x} \right)\left( \sqrt{x} + \frac{1}{\sqrt{x}} \right)\]
\[\frac{( x^3 + 1)(x - 2)}{x^2}\]
\[\frac{a \cos x + b \sin x + c}{\sin x}\]
Find the rate at which the function f (x) = x4 − 2x3 + 3x2 + x + 5 changes with respect to x.
x3 ex
(x3 + x2 + 1) sin x
x5 ex + x6 log x
x5 (3 − 6x−9)
Differentiate each of the following functions by the product rule and the other method and verify that answer from both the methods is the same.
(3 sec x − 4 cosec x) (−2 sin x + 5 cos x)
\[\frac{a + \sin x}{1 + a \sin x}\]
\[\frac{x}{1 + \tan x}\]
\[\frac{\sec x - 1}{\sec x + 1}\]
\[\frac{1}{a x^2 + bx + c}\]
If \[\frac{\pi}{2}\] then find \[\frac{d}{dx}\left( \sqrt{\frac{1 + \cos 2x}{2}} \right)\]
If f (x) = |x| + |x−1|, write the value of \[\frac{d}{dx}\left( f (x) \right)\]
Mark the correct alternative in of the following:
Let f(x) = x − [x], x ∈ R, then \[f'\left( \frac{1}{2} \right)\]
Find the derivative of f(x) = tan(ax + b), by first principle.