Advertisements
Advertisements
प्रश्न
\[\frac{1}{\sqrt{3 - x}}\]
उत्तर
\[ \frac{d}{dx}\left( f(x) \right) = \lim_{h \to 0} \frac{f\left( x + h \right) - f\left( x \right)}{h}\]
\[ = \lim_{h \to 0} \frac{\frac{1}{\sqrt{3 - x - h}} - \frac{1}{\sqrt{3 - x}}}{h}\]
\[ = \lim_{h \to 0} \frac{\left( \sqrt{3 - x} - \sqrt{3 - x - h} \right)}{h\sqrt{3 - x}\sqrt{3 - x - h}}\]
\[ = \lim_{h \to 0} \frac{\left( \sqrt{3 - x} - \sqrt{3 - x - h} \right)}{h\sqrt{3 - x}\sqrt{3 - x - h}} \times \frac{\left( \sqrt{3 - x} + \sqrt{3 - x - h} \right)}{\left( \sqrt{3 - x} + \sqrt{3 - x - h} \right)}\]
\[ = \lim_{h \to 0} \frac{\left( 3 - x - 3 + x + h \right)}{h\sqrt{3 - x}\sqrt{3 - x - h}\left( \sqrt{3 - x} + \sqrt{3 - x - h} \right)}\]
\[ = \lim_{h \to 0} \frac{h}{h\sqrt{3 - x}\sqrt{3 - x - h}\left( \sqrt{3 - x} + \sqrt{3 - x - h} \right)}\]
\[ = \lim_{h \to 0} \frac{1}{\sqrt{3 - x}\sqrt{3 - x - h}\left( \sqrt{3 - x} + \sqrt{3 - x - h} \right)}\]
\[ = \frac{1}{\sqrt{3 - x}\sqrt{3 - x - 0}\left( \sqrt{3 - x} + \sqrt{3 - x - 0} \right)}\]
\[ = \frac{1}{\left( 3 - x \right) \left( 2\sqrt{3 - x} \right)}\]
\[ = \frac{1}{2 \left( 3 - x \right)^\frac{3}{2}}\]
APPEARS IN
संबंधित प्रश्न
Find the derivative of `2x - 3/4`
Find the derivative of x–3 (5 + 3x).
Find the derivative of `2/(x + 1) - x^2/(3x -1)`.
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(px+ q) (r/s + s)`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`4sqrtx - 2`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
sin (x + a)
\[\frac{x^2 - 1}{x}\]
Differentiate of the following from first principle:
eax + b
Differentiate of the following from first principle:
− x
Differentiate of the following from first principle:
(−x)−1
Differentiate of the following from first principle:
\[\cos\left( x - \frac{\pi}{8} \right)\]
Differentiate of the following from first principle:
x cos x
Differentiate of the following from first principle:
sin (2x − 3)
Differentiate each of the following from first principle:
\[\frac{\sin x}{x}\]
Differentiate each of the following from first principle:
\[e^\sqrt{ax + b}\]
tan 2x
3x + x3 + 33
\[\frac{x^3}{3} - 2\sqrt{x} + \frac{5}{x^2}\]
ex log a + ea long x + ea log a
\[\left( \sqrt{x} + \frac{1}{\sqrt{x}} \right)^3\]
\[\frac{2 x^2 + 3x + 4}{x}\]
\[\log\left( \frac{1}{\sqrt{x}} \right) + 5 x^a - 3 a^x + \sqrt[3]{x^2} + 6 \sqrt[4]{x^{- 3}}\]
\[\text{ If } y = \left( \frac{2 - 3 \cos x}{\sin x} \right), \text{ find } \frac{dy}{dx} at x = \frac{\pi}{4}\]
Find the slope of the tangent to the curve f (x) = 2x6 + x4 − 1 at x = 1.
x4 (5 sin x − 3 cos x)
\[\frac{x + e^x}{1 + \log x}\]
\[\frac{a x^2 + bx + c}{p x^2 + qx + r}\]
\[\frac{4x + 5 \sin x}{3x + 7 \cos x}\]
\[\frac{p x^2 + qx + r}{ax + b}\]
Write the value of \[\lim_{x \to c} \frac{f(x) - f(c)}{x - c}\]
If x < 2, then write the value of \[\frac{d}{dx}(\sqrt{x^2 - 4x + 4)}\]
Write the value of \[\frac{d}{dx}\left( x \left| x \right| \right)\]
Write the derivative of f (x) = 3 |2 + x| at x = −3.
If f (x) = \[\log_{x_2}\]write the value of f' (x).
Mark the correct alternative in of the following:
Let f(x) = x − [x], x ∈ R, then \[f'\left( \frac{1}{2} \right)\]
Mark the correct alternative in of the following:
If \[y = \sqrt{x} + \frac{1}{\sqrt{x}}\] then \[\frac{dy}{dx}\] at x = 1 is
Mark the correct alternative in of the following:
If \[y = \frac{\sin\left( x + 9 \right)}{\cos x}\] then \[\frac{dy}{dx}\] at x = 0 is
`(a + b sin x)/(c + d cos x)`