Advertisements
Advertisements
प्रश्न
x2 + x + 3
उत्तर
\[\frac{d}{dx}\left( f(x) \right) = \lim_{h \to 0} \frac{f\left( x + h \right) - f\left( x \right)}{h}\]
\[ = \lim_{h \to 0} \frac{\left( x + h \right)^2 + x + h + 3 - \left( x^2 + x + 3 \right)}{h}\]
\[ = \lim_{h \to 0} \frac{x^2 + h^2 + 2xh + x + h + 3 - x^2 - x - 3}{h}\]
\[ = \lim_{h \to 0} \frac{h^2 + 2xh + h}{h}\]
\[ = \lim_{h \to 0} \frac{h(h + 2x + 1)}{h}\]
\[ = \lim_{h \to 0} h + 2x + 1\]
\[ = 0 + 2x + 1\]
\[ = 2x + 1\]
APPEARS IN
संबंधित प्रश्न
Find the derivative of `2x - 3/4`
Find the derivative of (5x3 + 3x – 1) (x – 1).
Find the derivative of x–3 (5 + 3x).
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`a/x^4 = b/x^2 + cos x`
Find the derivative of the following function at the indicated point:
\[\frac{x^2 - 1}{x}\]
k xn
(x + 2)3
Differentiate of the following from first principle:
− x
Differentiate of the following from first principle:
x cos x
Differentiate of the following from first principle:
sin (2x − 3)
Differentiate each of the following from first principle:
sin x + cos x
Differentiate each of the following from first principle:
\[3^{x^2}\]
tan 2x
\[\tan \sqrt{x}\]
\[\frac{x^3}{3} - 2\sqrt{x} + \frac{5}{x^2}\]
(2x2 + 1) (3x + 2)
\[\left( x + \frac{1}{x} \right)\left( \sqrt{x} + \frac{1}{\sqrt{x}} \right)\]
\[\frac{1}{\sin x} + 2^{x + 3} + \frac{4}{\log_x 3}\]
cos (x + a)
\[\text{ If } y = \left( \sin\frac{x}{2} + \cos\frac{x}{2} \right)^2 , \text{ find } \frac{dy}{dx} at x = \frac{\pi}{6} .\]
(x3 + x2 + 1) sin x
(x sin x + cos x ) (ex + x2 log x)
x−4 (3 − 4x−5)
\[\frac{e^x}{1 + x^2}\]
\[\frac{2^x \cot x}{\sqrt{x}}\]
\[\frac{1 + \log x}{1 - \log x}\]
\[\frac{x + \cos x}{\tan x}\]
\[\frac{x}{\sin^n x}\]
\[\frac{ax + b}{p x^2 + qx + r}\]
\[\frac{1}{a x^2 + bx + c}\]
Write the value of \[\lim_{x \to a} \frac{x f (a) - a f (x)}{x - a}\]
If \[\frac{\pi}{2}\] then find \[\frac{d}{dx}\left( \sqrt{\frac{1 + \cos 2x}{2}} \right)\]
If f (x) = \[\frac{x^2}{\left| x \right|},\text{ write }\frac{d}{dx}\left( f (x) \right)\]
If |x| < 1 and y = 1 + x + x2 + x3 + ..., then write the value of \[\frac{dy}{dx}\]
Mark the correct alternative in of the following:
If \[f\left( x \right) = \frac{x - 4}{2\sqrt{x}}\]
Mark the correct alternative in of the following:
If\[y = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + . . .\]then \[\frac{dy}{dx} =\]
Find the derivative of x2 cosx.