हिंदी

Tan 2x - Mathematics

Advertisements
Advertisements

प्रश्न

 tan 2

उत्तर

\[ \frac{d}{dx}\left( f(x) \right) = \lim_{h \to 0} \frac{f\left( x + h \right) - f\left( x \right)}{h}\]
\[ = \lim_{h \to 0} \frac{\tan \left( 2x + 2h \right) - \tan \left( 2x \right)}{h}\]
\[ = \lim_{h \to 0} \frac{\frac{sin \left( 2x + 2h \right)}{\cos \left( 2x + 2h \right)} - \frac{\sin \left( 2x \right)}{\cos \left( 2x \right)}}{h}\]
\[ = \lim_{h \to 0} \frac{sin \left( 2x + 2h \right) \cos \left( 2x \right) - \cos \left( 2x + 2h \right) \sin \left( 2x \right)}{h \cos \left( 2x + 2h \right) \cos \left( 2x \right)}\]
\[ = \lim_{h \to 0} \frac{\sin \left( 2x + 2h - 2x \right)}{h \cos \left( 2x + 2h \right) \cos \left( 2x \right)}\]
\[ = \frac{1}{\cos 2x} \lim_{h \to 0} \frac{\sin \left( 2h \right)}{2h} \times 2 \times \lim_{h \to 0} \frac{1}{\cos \left( 2x + 2h \right)}\]
\[ = \frac{1}{\cos 2x} \times 2 \times \frac{1}{\cos 2x}\]
\[ = \frac{2}{\cos^2 \left( 2x \right)}\]
\[ = 2 \sec^2 \left( 2x \right)\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 30: Derivatives - Exercise 30.2 [पृष्ठ २६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 30 Derivatives
Exercise 30.2 | Q 4.3 | पृष्ठ २६

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Find the derivative of x2 – 2 at x = 10.


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

sin (x + a)


Find the derivative of f (x) = 3x at x = 2 


Find the derivative of (x) = tan x at x = 0 


Find the derivative of the following function at the indicated point:

2 cos x at x =\[\frac{\pi}{2}\] 


\[\frac{2}{x}\]


Differentiate each of the following from first principle:

ex


x ex


Differentiate of the following from first principle:

(−x)−1


Differentiate each of the following from first principle:

\[\frac{\sin x}{x}\]


Differentiate each of the following from first principle:

\[3^{x^2}\]


tan2 


\[\sqrt{\tan x}\]


x4 − 2 sin x + 3 cos x


\[\left( \sqrt{x} + \frac{1}{\sqrt{x}} \right)^3\] 


\[\text{ If } y = \frac{2 x^9}{3} - \frac{5}{7} x^7 + 6 x^3 - x, \text{ find } \frac{dy}{dx} at x = 1 .\] 


sin x cos x


(x sin x + cos x ) (ex + x2 log x


(1 − 2 tan x) (5 + 4 sin x)


x5 (3 − 6x−9


x4 (3 − 4x−5)


\[\frac{a x^2 + bx + c}{p x^2 + qx + r}\] 


\[\frac{e^x}{1 + x^2}\] 


\[\frac{x^2 - x + 1}{x^2 + x + 1}\] 


\[\frac{a + \sin x}{1 + a \sin x}\] 


\[\frac{1 + 3^x}{1 - 3^x}\]


\[\frac{1 + \log x}{1 - \log x}\] 


\[\frac{4x + 5 \sin x}{3x + 7 \cos x}\]


\[\frac{x}{1 + \tan x}\] 


\[\frac{1}{a x^2 + bx + c}\] 


If \[\frac{\pi}{2}\] then find \[\frac{d}{dx}\left( \sqrt{\frac{1 + \cos 2x}{2}} \right)\]


Write the value of the derivative of f (x) = |x − 1| + |x − 3| at x = 2.


Write the derivative of f (x) = 3 |2 + x| at x = −3. 


Mark the correct alternative in of the following: 

If \[f\left( x \right) = \frac{x - 4}{2\sqrt{x}}\]

 


Mark the correct alternative in each of the following:
If\[y = \frac{\sin x + \cos x}{\sin x - \cos x}\] then \[\frac{dy}{dx}\]at x = 0 is 


Mark the correct alternative in of the following: 

If f(x) = x sinx, then \[f'\left( \frac{\pi}{2} \right) =\] 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×