Advertisements
Advertisements
प्रश्न
\[\frac{2^x \cot x}{\sqrt{x}}\]
उत्तर
\[\text{ Let } u = 2^x \cot x; v = \sqrt{x}\]
\[\text{ Then }, u' = - 2^x {cosec}^2 x + 2^x \log 2 \cot x; v' = \frac{1}{2\sqrt{x}}\]
\[\frac{d}{dx}\left( \frac{u}{v} \right) = \frac{vu' - uv'}{v^2}\]
\[\frac{d}{dx}\left( \frac{2^x cot x}{\sqrt{x}} \right) = \frac{\sqrt{x}\left( - 2^x {cosec}^2 x + 2^x \log 2 \cot x \right) - 2^x \cot x\left( \frac{1}{2\sqrt{x}} \right)}{\left( \sqrt{x} \right)^2}\]
\[ = \frac{\frac{x\left( - 2^x {cosec}^2 x + 2^x \log 2 \cot x \right) - 2^{x - 1} \cot x}{\sqrt{x}}}{x}\]
\[ = \frac{2^x \left( - x {cosec}^2 x + x \cot x \log 2 - \left( \frac{1}{2} \right)\cot x \right)}{x\sqrt{x}}\]
\[ = \frac{2^x \left( - x {cosec}^2 x + x \cot x \log 2 - \left( \frac{1}{2} \right)\cot x \right)}{x^\frac{3}{2}}\]
\[\]
APPEARS IN
संबंधित प्रश्न
Find the derivative of x2 – 2 at x = 10.
For the function
f(x) = `x^100/100 + x^99/99 + ...+ x^2/2 + x + 1`
Prove that f'(1) = 100 f'(0)
Find the derivative of `2x - 3/4`
Find the derivative of x–3 (5 + 3x).
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`4sqrtx - 2`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`cos x/(1 + sin x)`
Find the derivative of f (x) = tan x at x = 0
Find the derivative of the following function at the indicated point:
2 cos x at x =\[\frac{\pi}{2}\]
\[\frac{x^2 + 1}{x}\]
k xn
x2 + x + 3
Differentiate of the following from first principle:
e3x
Differentiate of the following from first principle:
− x
Differentiate each of the following from first principle:
\[e^{x^2 + 1}\]
Differentiate each of the following from first principle:
\[e^\sqrt{2x}\]
2 sec x + 3 cot x − 4 tan x
\[\frac{(x + 5)(2 x^2 - 1)}{x}\]
\[\log\left( \frac{1}{\sqrt{x}} \right) + 5 x^a - 3 a^x + \sqrt[3]{x^2} + 6 \sqrt[4]{x^{- 3}}\]
\[\text{ If } y = \left( \sin\frac{x}{2} + \cos\frac{x}{2} \right)^2 , \text{ find } \frac{dy}{dx} at x = \frac{\pi}{6} .\]
\[If y = \sqrt{\frac{x}{a}} + \sqrt{\frac{a}{x}}, \text{ prove that } 2xy\frac{dy}{dx} = \left( \frac{x}{a} - \frac{a}{x} \right)\]
(x sin x + cos x) (x cos x − sin x)
(1 − 2 tan x) (5 + 4 sin x)
(1 +x2) cos x
\[e^x \log \sqrt{x} \tan x\]
Differentiate each of the following functions by the product rule and the other method and verify that answer from both the methods is the same.
(3x2 + 2)2
\[\frac{x}{1 + \tan x}\]
\[\frac{e^x}{1 + x^2}\]
\[\frac{{10}^x}{\sin x}\]
\[\frac{1 + \log x}{1 - \log x}\]
\[\frac{4x + 5 \sin x}{3x + 7 \cos x}\]
\[\frac{x}{\sin^n x}\]
\[\frac{ax + b}{p x^2 + qx + r}\]
Write the value of \[\lim_{x \to c} \frac{f(x) - f(c)}{x - c}\]
If f (x) = \[\frac{x^2}{\left| x \right|},\text{ write }\frac{d}{dx}\left( f (x) \right)\]
Write the derivative of f (x) = 3 |2 + x| at x = −3.
Mark the correct alternative in of the following:
If \[f\left( x \right) = \frac{x - 4}{2\sqrt{x}}\]
Find the derivative of f(x) = tan(ax + b), by first principle.