हिंदी

I F Y = √ X a + √ a X , Prove that 2 X Y D Y D X = ( X a − a X ) - Mathematics

Advertisements
Advertisements

प्रश्न

Ify=xa+ax, prove that 2xydydx=(xaax)  

उत्तर

y=xa+ax=1ax12+ax12
dydx=1a12x12+a(12)x32
LHS=2xydydx
=2x(1ax12+ax12)(1a12x12+a(12)x32)
=2x(12a12x+12xa2x2)
=2x(12aa2x2)
=(xaax)
=RHS
 Hence, proved .

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 30: Derivatives - Exercise 30.3 [पृष्ठ ३४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 30 Derivatives
Exercise 30.3 | Q 22 | पृष्ठ ३४

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

ax+bcx+d


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

ax+bpx2+qx+r


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

(ax + b)n (cx + d)m


Find the derivative of f (x) = x2 − 2 at x = 10


Find the derivative of the following function at the indicated point:


Find the derivative of the following function at the indicated point: 

 sin 2x at x =π2


13x


 (x2 + 1) (x − 5)


x ex


Differentiate  of the following from first principle:

cos(xπ8)


Differentiate each of the following from first principle:

sin2x 


Differentiate each of the following from first principle:

sinxx


Differentiate each of the following from first principle: 

ex2+1


Differentiate each of the following from first principle:

eax+b


tanx


tanx 


2x2+3x+4x 


1sinx+2x+3+4logx3 


x3 sin 


xn loga 


x5 ex + x6 log 


(2x2 − 3) sin 


x4 (3 − 4x−5)


Differentiate in two ways, using product rule and otherwise, the function (1 + 2 tan x) (5 + 4 cos x). Verify that the answers are the same. 


Differentiate each of the following functions by the product rule and the other method and verify that answer from both the methods is the same.

(x + 2) (x + 3)

 


2x1x2+1 


ex1+x2 


xtanxsecx+tanx


3xx+tanx 


1+logx1logx 


x1+tanx 


ax+bpx2+qx+r 


Write the value of ddx(log|x|)


Mark the correct alternative in  of the following:

Iff(x)=1x+x2x3+...x99+x100then f(1) 


Mark the correct alternative in of the following:

If y=x+1x then dydx at x = 1 is


Mark the correct alternative in  of the following:
Iff(x)=1+x+x22+...+x100100 then f(1) is equal to 


Mark the correct alternative in  of the following:
If y=sin(x+9)cosx then dydx at x = 0 is 


Find the derivative of x2 cosx.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×
Our website is made possible by ad-free subscriptions or displaying online advertisements to our visitors.
If you don't like ads you can support us by buying an ad-free subscription or please consider supporting us by disabling your ad blocker. Thank you.