Advertisements
Advertisements
प्रश्न
Differentiate each of the following from first principle:
\[e^{x^2 + 1}\]
उत्तर
\[ \frac{d}{dx}\left( f(x) \right) = \lim_{h \to 0} \frac{f\left( x + h \right) - f\left( x \right)}{h}\]
\[\frac{d}{dx}\left( e^{x^2 + 1} \right) = \lim_{h \to 0} \frac{e^{(x + h )^2 + 1} - e^{x^2 + 1}}{h}\]
\[ = \lim_{h \to 0} \frac{e^{x^2 + h^2 + 2xh + 1} - e^{x^2 + 1}}{h}\]
\[ = \lim_{h \to 0} \frac{e^{x^2 + 1} e^{h^2 + 2xh} - e^{x^2 + 1}}{h}\]
\[ = \lim_{h \to 0} \frac{e^{x^2 + 1} \left( e^{h\left( h + 2x \right)} - 1 \right)}{h} \times \frac{\left( h + 2x \right)}{\left( h + 2x \right)}\]
\[ = e^{x^2 + 1} \lim_{h \to 0} \frac{e^{h\left( h + 2x \right)} - 1}{h\left( h + 2x \right)} \lim_{h \to 0} \left( h + 2x \right)\]
\[ = e^{x^2 + 1} \left( 1 \right) \left( 2x \right)\]
\[ = 2x e^{x^2 + 1}\]
APPEARS IN
संबंधित प्रश्न
Find the derivative of x at x = 1.
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(px+ q) (r/s + s)`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
(ax + b) (cx + d)2
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(ax + b)/(cx + d)`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(px^2 +qx + r)/(ax +b)`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`a/x^4 = b/x^2 + cos x`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
sinn x
\[\frac{1}{\sqrt{3 - x}}\]
(x2 + 1) (x − 5)
(x2 + 1) (x − 5)
\[\frac{2x + 3}{x - 2}\]
Differentiate of the following from first principle:
e3x
Differentiate each of the following from first principle:
sin x + cos x
Differentiate each of the following from first principle:
\[e^\sqrt{ax + b}\]
\[\tan \sqrt{x}\]
\[\left( x + \frac{1}{x} \right)\left( \sqrt{x} + \frac{1}{\sqrt{x}} \right)\]
\[\log\left( \frac{1}{\sqrt{x}} \right) + 5 x^a - 3 a^x + \sqrt[3]{x^2} + 6 \sqrt[4]{x^{- 3}}\]
\[\text{ If } y = \left( \frac{2 - 3 \cos x}{\sin x} \right), \text{ find } \frac{dy}{dx} at x = \frac{\pi}{4}\]
x2 ex log x
sin x cos x
(1 +x2) cos x
sin2 x
(2x2 − 3) sin x
x−3 (5 + 3x)
Differentiate each of the following functions by the product rule and the other method and verify that answer from both the methods is the same.
(3x2 + 2)2
\[\frac{1}{a x^2 + bx + c}\]
\[\frac{x \sin x}{1 + \cos x}\]
\[\frac{2^x \cot x}{\sqrt{x}}\]
\[\frac{x^2 - x + 1}{x^2 + x + 1}\]
\[\frac{1 + \log x}{1 - \log x}\]
\[\frac{p x^2 + qx + r}{ax + b}\]
\[\frac{\sec x - 1}{\sec x + 1}\]
If \[\frac{\pi}{2}\] then find \[\frac{d}{dx}\left( \sqrt{\frac{1 + \cos 2x}{2}} \right)\]
If f (1) = 1, f' (1) = 2, then write the value of \[\lim_{x \to 1} \frac{\sqrt{f (x)} - 1}{\sqrt{x} - 1}\]
Mark the correct alternative in of the following:
If \[f\left( x \right) = \frac{x - 4}{2\sqrt{x}}\]