हिंदी

Differentiate Each of the Following from First Principle: Sin X + Cos X - Mathematics

Advertisements
Advertisements

प्रश्न

Differentiate each of the following from first principle: 

sin x + cos x

उत्तर

\[ \frac{d}{dx}\left( f(x) \right) = \lim_{h \to 0} \frac{f\left( x + h \right) - f\left( x \right)}{h}\]
\[ = \lim_{h \to 0} \frac{\sin \left( x + h \right) + cos \left( x + h \right) - \sin x - \cos x}{h}\]
\[ = \lim_{h \to 0} \frac{\sin \left( x + h \right) - \sin x}{h} + \lim_{h \to 0} \frac{\cos \left( x + h \right) - \cos x}{h}\]
\[\text{ We have }:\]
\[sin C-sin D= 2 cos\left( \frac{C + D}{2} \right)\sin\left( \frac{C - D}{2} \right)\]
\[And, cos C- \cos D = - 2 \sin\left( \frac{C + D}{2} \right)\sin\left( \frac{C - D}{2} \right)\]
\[ = \lim_{h \to 0} \frac{2 \cos \left( \frac{2x + h}{2} \right) \sin \frac{h}{2}}{h} + \lim_{h \to 0} \frac{- 2 \sin \left( \frac{2x + h}{2} \right) \sin \frac{h}{2}}{h}\]
\[ = 2 \lim_{h \to 0} \cos \left( \frac{2x + h}{2} \right) \lim_{h \to 0} \frac{\sin \frac{h}{2}}{\frac{h}{2}} \times \frac{1}{2} - 2 \lim_{h \to 0} \sin \left( \frac{2x + h}{2} \right) \lim_{h \to 0} \frac{\sin \frac{h}{2}}{\frac{h}{2}} \times \frac{1}{2}\]
\[ = 2 \cos x \times \frac{1}{2} - 2 \sin x \times \frac{1}{2}\]
\[ = \cos x - \sin x\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 30: Derivatives - Exercise 30.2 [पृष्ठ २६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 30 Derivatives
Exercise 30.2 | Q 3.06 | पृष्ठ २६

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`1/(ax^2 + bx + c)`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(px^2 +qx + r)/(ax +b)`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

sin (x + a)


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`cos x/(1 + sin x)`


Find the derivative of the following function at the indicated point: 

 sin x at x =\[\frac{\pi}{2}\]

 


Find the derivative of the following function at the indicated point:


\[\frac{x + 1}{x + 2}\]


Differentiate of the following from first principle:

(−x)−1


Differentiate  of the following from first principle:

 x sin x


Differentiate each of the following from first principle: 

\[e^{x^2 + 1}\]


Differentiate each of the following from first principle:

\[a^\sqrt{x}\]


Differentiate each of the following from first principle:

\[3^{x^2}\]


 tan 2


\[\sqrt{\tan x}\]


\[\frac{a \cos x + b \sin x + c}{\sin x}\]


a0 xn + a1 xn−1 + a2 xn2 + ... + an1 x + an


\[\frac{(x + 5)(2 x^2 - 1)}{x}\]


cos (x + a)


\[\text{ If } y = \left( \sin\frac{x}{2} + \cos\frac{x}{2} \right)^2 , \text{ find } \frac{dy}{dx} at x = \frac{\pi}{6} .\]


Find the rate at which the function f (x) = x4 − 2x3 + 3x2 + x + 5 changes with respect to x.


(x sin x + cos x ) (ex + x2 log x


(1 − 2 tan x) (5 + 4 sin x)


\[e^x \log \sqrt{x} \tan x\] 


(2x2 − 3) sin 


x−3 (5 + 3x


Differentiate each of the following functions by the product rule and the other method and verify that answer from both the methods is the same. 

 (3x2 + 2)2


Differentiate each of the following functions by the product rule and the other method and verify that answer from both the methods is the same.

(x + 2) (x + 3)

 


\[\frac{1}{a x^2 + bx + c}\] 


\[\frac{e^x}{1 + x^2}\] 


\[\frac{x \tan x}{\sec x + \tan x}\]


\[\frac{2^x \cot x}{\sqrt{x}}\] 


\[\frac{\sin x - x \cos x}{x \sin x + \cos x}\]


\[\frac{a + b \sin x}{c + d \cos x}\] 


\[\frac{p x^2 + qx + r}{ax + b}\]


Write the value of \[\lim_{x \to c} \frac{f(x) - f(c)}{x - c}\] 


If f (x) = \[\frac{x^2}{\left| x \right|},\text{ write }\frac{d}{dx}\left( f (x) \right)\] 


Mark the correct alternative in of the following: 

If \[f\left( x \right) = \frac{x - 4}{2\sqrt{x}}\]

 


Mark the correct alternative in  of the following:

If\[f\left( x \right) = 1 - x + x^2 - x^3 + . . . - x^{99} + x^{100}\]then \[f'\left( 1 \right)\] 


Mark the correct alternative in  of the following:
If\[f\left( x \right) = 1 + x + \frac{x^2}{2} + . . . + \frac{x^{100}}{100}\] then \[f'\left( 1 \right)\] is equal to 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×