Advertisements
Advertisements
प्रश्न
Differentiate of the following from first principle:
sin (2x − 3)
उत्तर
\[\frac{d}{dx}\left( f(x) \right) = \lim_{h \to 0} \frac{f\left( x + h \right) - f\left( x \right)}{h}\]
\[ = \lim_{h \to 0} \frac{\sin \left( 2x + 2h - 3 \right) - \sin \left( 2x - 3 \right)}{h}\]
\[\text{ We know }:\]
\[sin C-sin D=2 cos\left( \frac{C + D}{2} \right)\sin\left( \frac{C - D}{2} \right)\]
\[ = \lim_{h \to 0} \frac{2 \cos \left( \frac{2x + 2h - 3 + 2x - 3}{2} \right) \sin \left( \frac{2x + 2h - 3 + 2x - 3}{2} \right)}{h}\]
\[ = \lim_{h \to 0} \frac{2 \cos \left( \frac{4x + 2h - 6}{2} \right) \sin \left( h \right)}{h}\]
\[ = \lim_{h \to 0} 2 \cos \left( \frac{4x + 2h - 6}{2} \right) \lim_{h \to 0} \frac{\sin h}{h}\]
\[ = 2 \cos \left( \frac{4x - 6}{2} \right) \left( 1 \right)\]
\[ = 2 \cos \left( 2x - 3 \right)\]
\[ \]
\[\]
APPEARS IN
संबंधित प्रश्न
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(ax + b)/(cx + d)`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(px^2 +qx + r)/(ax +b)`
Find the derivative of f (x) = 3x at x = 2
Find the derivative of f (x) = tan x at x = 0
Find the derivative of the following function at the indicated point:
sin x at x =\[\frac{\pi}{2}\]
\[\frac{x^2 + 1}{x}\]
\[\frac{x + 1}{x + 2}\]
k xn
(x + 2)3
Differentiate of the following from first principle:
e3x
Differentiate of the following from first principle:
sin (x + 1)
Differentiate each of the following from first principle:
x2 ex
Differentiate each of the following from first principle:
\[e^\sqrt{2x}\]
\[\cos \sqrt{x}\]
\[\frac{a \cos x + b \sin x + c}{\sin x}\]
a0 xn + a1 xn−1 + a2 xn−2 + ... + an−1 x + an.
\[\frac{1}{\sin x} + 2^{x + 3} + \frac{4}{\log_x 3}\]
cos (x + a)
\[\text{ If } y = \left( \sin\frac{x}{2} + \cos\frac{x}{2} \right)^2 , \text{ find } \frac{dy}{dx} at x = \frac{\pi}{6} .\]
\[\text{ If } y = \left( \frac{2 - 3 \cos x}{\sin x} \right), \text{ find } \frac{dy}{dx} at x = \frac{\pi}{4}\]
Find the slope of the tangent to the curve f (x) = 2x6 + x4 − 1 at x = 1.
\[If y = \sqrt{\frac{x}{a}} + \sqrt{\frac{a}{x}}, \text{ prove that } 2xy\frac{dy}{dx} = \left( \frac{x}{a} - \frac{a}{x} \right)\]
If for f (x) = λ x2 + μ x + 12, f' (4) = 15 and f' (2) = 11, then find λ and μ.
x3 ex
sin x cos x
(1 +x2) cos x
Differentiate each of the following functions by the product rule and the other method and verify that answer from both the methods is the same.
(3 sec x − 4 cosec x) (−2 sin x + 5 cos x)
(ax + b) (a + d)2
\[\frac{2x - 1}{x^2 + 1}\]
\[\frac{x + e^x}{1 + \log x}\]
\[\frac{1}{a x^2 + bx + c}\]
\[\frac{1 + \log x}{1 - \log x}\]
\[\frac{a + b \sin x}{c + d \cos x}\]
\[\frac{x + \cos x}{\tan x}\]
If f (1) = 1, f' (1) = 2, then write the value of \[\lim_{x \to 1} \frac{\sqrt{f (x)} - 1}{\sqrt{x} - 1}\]
Write the derivative of f (x) = 3 |2 + x| at x = −3.
Mark the correct alternative in of the following:
If\[f\left( x \right) = 1 - x + x^2 - x^3 + . . . - x^{99} + x^{100}\]then \[f'\left( 1 \right)\]
Let f(x) = x – [x]; ∈ R, then f'`(1/2)` is ______.