हिंदी

Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers): sin(x+a)cosx - Mathematics

Advertisements
Advertisements

प्रश्न

Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(sin(x + a))/ cos x`

योग

उत्तर

Let f(x) = `(sin (x + a))/(cos x)`

By quotient rule,

f'(x) = `(cos x d/dx [sin (x + a)] - sin(x + a) d/dx cos x)/cos^2 x`

f'(x) = `(cos x d/dx [sin (x + a)] - sin(x + a) (-sin x))/cos^2 x`    ...(i)

Let g(x) = sin (x + a) Accordingly. g(x + h) = sin (x + h + a)

By first principle,

g'(x) = `lim_(h->0) (g(x + h) - g(x))/h`

= `lim_(h->0)1/h [sin (x + h + a) -sin (x + a)]`

= `lim_(h->0)1/h [2 cos ((x + h + a + x + a)/2) sin  ((x + h + a - x - a)/2)]`

= `lim_(h->0)1/h [2 cos ((2x + 2a + h)/2) sin(h/2)]`

= `lim_(h->0) [cos ((2x + 2a + h)/2) {sin (h/2)/(h/2)}]`

= `lim_(h->0) cos ((2x + 2a + h)/2) lim_(h->0){sin (h/2)/(h/2)}`     `["As" h->0=>h/2->0]`

= `(cos  (2x + 2a)/2) xx 1`          `[lim_(h->0) (sin h)/h = 1]`

= cos (x + a)

From (i) and (ii) we obtain

f'(x) = `(cosx. cos (x + a) + sin x sin (x + a))/cos^2x`

= `(cos (x + a - x))/cos^2 x`

= `(cos a)/cos^2 x`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 13: Limits and Derivatives - Miscellaneous Exercise [पृष्ठ ३१८]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 11
अध्याय 13 Limits and Derivatives
Miscellaneous Exercise | Q 21 | पृष्ठ ३१८

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Find the derivative of 99x at x = 100.


For the function

f(x) = `x^100/100 + x^99/99 + ...+ x^2/2 + x + 1`

Prove that f'(1) = 100 f'(0)


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(1 + 1/x)/(1- 1/x)`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`1/(ax^2 + bx + c)`


Find the derivative of f (x) = 99x at x = 100 


Find the derivative of (x) = tan x at x = 0 


Find the derivative of the following function at the indicated point:


Find the derivative of the following function at the indicated point: 

 sin 2x at x =\[\frac{\pi}{2}\]


 (x2 + 1) (x − 5)


\[\sqrt{2 x^2 + 1}\]


Differentiate  of the following from first principle:

 x sin x


Differentiate each of the following from first principle: 

\[\frac{\cos x}{x}\]


\[\cos \sqrt{x}\]


\[\tan \sqrt{x}\]


\[\frac{x^3}{3} - 2\sqrt{x} + \frac{5}{x^2}\]


\[\left( x + \frac{1}{x} \right)\left( \sqrt{x} + \frac{1}{\sqrt{x}} \right)\] 


\[\frac{( x^3 + 1)(x - 2)}{x^2}\] 


\[\text{ If } y = \left( \sin\frac{x}{2} + \cos\frac{x}{2} \right)^2 , \text{ find } \frac{dy}{dx} at x = \frac{\pi}{6} .\]


Find the slope of the tangent to the curve (x) = 2x6 + x4 − 1 at x = 1.


x3 sin 


x3 e


x5 ex + x6 log 


sin2 


\[e^x \log \sqrt{x} \tan x\] 


\[\frac{e^x + \sin x}{1 + \log x}\] 


\[\frac{a + \sin x}{1 + a \sin x}\] 


\[\frac{x}{1 + \tan x}\] 


\[\frac{x^5 - \cos x}{\sin x}\] 


Write the value of \[\lim_{x \to a} \frac{x f (a) - a f (x)}{x - a}\]


If f (x) = \[\frac{x^2}{\left| x \right|},\text{ write }\frac{d}{dx}\left( f (x) \right)\] 


If f (x) = |x| + |x−1|, write the value of \[\frac{d}{dx}\left( f (x) \right)\]


Mark the correct alternative in  of the following:
If\[f\left( x \right) = 1 + x + \frac{x^2}{2} + . . . + \frac{x^{100}}{100}\] then \[f'\left( 1 \right)\] is equal to 


Mark the correct alternative in each of the following: 

If\[f\left( x \right) = \frac{x^n - a^n}{x - a}\] then \[f'\left( a \right)\] 


Mark the correct alternative in of the following: 

If f(x) = x sinx, then \[f'\left( \frac{\pi}{2} \right) =\] 


Let f(x) = x – [x]; ∈ R, then f'`(1/2)` is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×