Advertisements
Advertisements
प्रश्न
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(sin(x + a))/ cos x`
उत्तर
Let f(x) = `(sin (x + a))/(cos x)`
By quotient rule,
f'(x) = `(cos x d/dx [sin (x + a)] - sin(x + a) d/dx cos x)/cos^2 x`
f'(x) = `(cos x d/dx [sin (x + a)] - sin(x + a) (-sin x))/cos^2 x` ...(i)
Let g(x) = sin (x + a) Accordingly. g(x + h) = sin (x + h + a)
By first principle,
g'(x) = `lim_(h->0) (g(x + h) - g(x))/h`
= `lim_(h->0)1/h [sin (x + h + a) -sin (x + a)]`
= `lim_(h->0)1/h [2 cos ((x + h + a + x + a)/2) sin ((x + h + a - x - a)/2)]`
= `lim_(h->0)1/h [2 cos ((2x + 2a + h)/2) sin(h/2)]`
= `lim_(h->0) [cos ((2x + 2a + h)/2) {sin (h/2)/(h/2)}]`
= `lim_(h->0) cos ((2x + 2a + h)/2) lim_(h->0){sin (h/2)/(h/2)}` `["As" h->0=>h/2->0]`
= `(cos (2x + 2a)/2) xx 1` `[lim_(h->0) (sin h)/h = 1]`
= cos (x + a)
From (i) and (ii) we obtain
f'(x) = `(cosx. cos (x + a) + sin x sin (x + a))/cos^2x`
= `(cos (x + a - x))/cos^2 x`
= `(cos a)/cos^2 x`
APPEARS IN
संबंधित प्रश्न
Find the derivative of 99x at x = 100.
For the function
f(x) = `x^100/100 + x^99/99 + ...+ x^2/2 + x + 1`
Prove that f'(1) = 100 f'(0)
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(1 + 1/x)/(1- 1/x)`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`1/(ax^2 + bx + c)`
Find the derivative of f (x) = 99x at x = 100
Find the derivative of f (x) = tan x at x = 0
Find the derivative of the following function at the indicated point:
Find the derivative of the following function at the indicated point:
sin 2x at x =\[\frac{\pi}{2}\]
(x2 + 1) (x − 5)
\[\sqrt{2 x^2 + 1}\]
Differentiate of the following from first principle:
x sin x
Differentiate each of the following from first principle:
\[\frac{\cos x}{x}\]
\[\cos \sqrt{x}\]
\[\tan \sqrt{x}\]
\[\frac{x^3}{3} - 2\sqrt{x} + \frac{5}{x^2}\]
\[\left( x + \frac{1}{x} \right)\left( \sqrt{x} + \frac{1}{\sqrt{x}} \right)\]
\[\frac{( x^3 + 1)(x - 2)}{x^2}\]
\[\text{ If } y = \left( \sin\frac{x}{2} + \cos\frac{x}{2} \right)^2 , \text{ find } \frac{dy}{dx} at x = \frac{\pi}{6} .\]
Find the slope of the tangent to the curve f (x) = 2x6 + x4 − 1 at x = 1.
x3 sin x
x3 ex
x5 ex + x6 log x
sin2 x
\[e^x \log \sqrt{x} \tan x\]
\[\frac{e^x + \sin x}{1 + \log x}\]
\[\frac{a + \sin x}{1 + a \sin x}\]
\[\frac{x}{1 + \tan x}\]
\[\frac{x^5 - \cos x}{\sin x}\]
Write the value of \[\lim_{x \to a} \frac{x f (a) - a f (x)}{x - a}\]
If f (x) = \[\frac{x^2}{\left| x \right|},\text{ write }\frac{d}{dx}\left( f (x) \right)\]
If f (x) = |x| + |x−1|, write the value of \[\frac{d}{dx}\left( f (x) \right)\]
Mark the correct alternative in of the following:
If\[f\left( x \right) = 1 + x + \frac{x^2}{2} + . . . + \frac{x^{100}}{100}\] then \[f'\left( 1 \right)\] is equal to
Mark the correct alternative in each of the following:
If\[f\left( x \right) = \frac{x^n - a^n}{x - a}\] then \[f'\left( a \right)\]
Mark the correct alternative in of the following:
If f(x) = x sinx, then \[f'\left( \frac{\pi}{2} \right) =\]
Let f(x) = x – [x]; ∈ R, then f'`(1/2)` is ______.