Advertisements
Advertisements
प्रश्न
\[\frac{1}{\sqrt{x}}\]
उत्तर
\[ \frac{d}{dx}\left( f(x) \right) = \lim_{h \to 0} \frac{f\left( x + h \right) - f\left( x \right)}{h}\]
\[ = \lim_{h \to 0} \frac{\frac{1}{\sqrt{x + h}} - \frac{1}{\sqrt{x}}}{h}\]
\[ = \lim_{h \to 0} \frac{\sqrt{x} - \sqrt{x + h}}{h\sqrt{x}\sqrt{x + h}} \times \frac{\sqrt{x} + \sqrt{x + h}}{\sqrt{x} + \sqrt{x + h}}\]
\[ = \lim_{h \to 0} \frac{x - x - h}{h\sqrt{x}\sqrt{x + h}\left( \sqrt{x} + \sqrt{x + h} \right)}\]
\[ = \lim_{h \to 0} \frac{- h}{h\sqrt{x}\sqrt{x + h}\left( \sqrt{x} + \sqrt{x + h} \right)}\]
\[ = \lim_{h \to 0} \frac{- 1}{\sqrt{x}\sqrt{x + h}\left( \sqrt{x} + \sqrt{x + h} \right)}\]
\[ = \frac{- 1}{\sqrt{x}\sqrt{x}\left( \sqrt{x} + \sqrt{x} \right)}\]
\[ = \frac{- 1}{x \times 2\sqrt{x}}\]
\[ = \frac{- 1}{2 x^\frac{3}{2}}\]
\[ = - \frac{1}{2} x^\frac{- 3}{2} \]
\[\]
APPEARS IN
संबंधित प्रश्न
Find the derivative of x at x = 1.
Find the derivative of x–3 (5 + 3x).
Find the derivative of x5 (3 – 6x–9).
Find the derivative of x–4 (3 – 4x–5).
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`cos x/(1 + sin x)`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(sin x + cos x)/(sin x - cos x)`
Find the derivative of f (x) = x2 − 2 at x = 10
Find the derivative of the following function at the indicated point:
sin 2x at x =\[\frac{\pi}{2}\]
\[\frac{2}{x}\]
\[\frac{x^2 - 1}{x}\]
\[\frac{x + 1}{x + 2}\]
\[\frac{x + 2}{3x + 5}\]
Differentiate each of the following from first principle:
e−x
Differentiate of the following from first principle:
e3x
Differentiate of the following from first principle:
\[\cos\left( x - \frac{\pi}{8} \right)\]
Differentiate each of the following from first principle:
\[e^\sqrt{2x}\]
Differentiate each of the following from first principle:
\[a^\sqrt{x}\]
ex log a + ea long x + ea log a
\[\frac{( x^3 + 1)(x - 2)}{x^2}\]
2 sec x + 3 cot x − 4 tan x
\[\text{ If } y = \left( \sin\frac{x}{2} + \cos\frac{x}{2} \right)^2 , \text{ find } \frac{dy}{dx} at x = \frac{\pi}{6} .\]
\[\text{ If } y = \left( \frac{2 - 3 \cos x}{\sin x} \right), \text{ find } \frac{dy}{dx} at x = \frac{\pi}{4}\]
sin2 x
x−3 (5 + 3x)
Differentiate each of the following functions by the product rule and the other method and verify that answer from both the methods is the same.
(x + 2) (x + 3)
(ax + b) (a + d)2
\[\frac{4x + 5 \sin x}{3x + 7 \cos x}\]
\[\frac{ax + b}{p x^2 + qx + r}\]
If x < 2, then write the value of \[\frac{d}{dx}(\sqrt{x^2 - 4x + 4)}\]
If f (x) = \[\log_{x_2}\]write the value of f' (x).
Mark the correct alternative in of the following:
If\[f\left( x \right) = 1 + x + \frac{x^2}{2} + . . . + \frac{x^{100}}{100}\] then \[f'\left( 1 \right)\] is equal to
Mark the correct alternative in of the following:
If \[y = \frac{\sin\left( x + 9 \right)}{\cos x}\] then \[\frac{dy}{dx}\] at x = 0 is
Mark the correct alternative in each of the following:
If\[f\left( x \right) = \frac{x^n - a^n}{x - a}\] then \[f'\left( a \right)\]
`(a + b sin x)/(c + d cos x)`