हिंदी

1 √ X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\frac{1}{\sqrt{x}}\]

उत्तर

\[ \frac{d}{dx}\left( f(x) \right) = \lim_{h \to 0} \frac{f\left( x + h \right) - f\left( x \right)}{h}\]
\[ = \lim_{h \to 0} \frac{\frac{1}{\sqrt{x + h}} - \frac{1}{\sqrt{x}}}{h}\]
\[ = \lim_{h \to 0} \frac{\sqrt{x} - \sqrt{x + h}}{h\sqrt{x}\sqrt{x + h}} \times \frac{\sqrt{x} + \sqrt{x + h}}{\sqrt{x} + \sqrt{x + h}}\]
\[ = \lim_{h \to 0} \frac{x - x - h}{h\sqrt{x}\sqrt{x + h}\left( \sqrt{x} + \sqrt{x + h} \right)}\]
\[ = \lim_{h \to 0} \frac{- h}{h\sqrt{x}\sqrt{x + h}\left( \sqrt{x} + \sqrt{x + h} \right)}\]
\[ = \lim_{h \to 0} \frac{- 1}{\sqrt{x}\sqrt{x + h}\left( \sqrt{x} + \sqrt{x + h} \right)}\]
\[ = \frac{- 1}{\sqrt{x}\sqrt{x}\left( \sqrt{x} + \sqrt{x} \right)}\]
\[ = \frac{- 1}{x \times 2\sqrt{x}}\]
\[ = \frac{- 1}{2 x^\frac{3}{2}}\]
\[ = - \frac{1}{2} x^\frac{- 3}{2} \]
\[\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 30: Derivatives - Exercise 30.2 [पृष्ठ २५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 30 Derivatives
Exercise 30.2 | Q 1.02 | पृष्ठ २५

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Find the derivative of x at x = 1.


Find the derivative of x–3 (5 + 3x).


Find the derivative of x5 (3 – 6x–9).


Find the derivative of x–4 (3 – 4x–5).


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`cos x/(1 + sin x)`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(sin x + cos x)/(sin x - cos x)`


Find the derivative of f (x) = x2 − 2 at x = 10


Find the derivative of the following function at the indicated point: 

 sin 2x at x =\[\frac{\pi}{2}\]


\[\frac{2}{x}\]


\[\frac{x^2 - 1}{x}\]


\[\frac{x + 1}{x + 2}\]


\[\frac{x + 2}{3x + 5}\]


Differentiate each of the following from first principle:

ex


Differentiate  of the following from first principle:

e3x


Differentiate  of the following from first principle:

\[\cos\left( x - \frac{\pi}{8} \right)\]


Differentiate each  of the following from first principle:

\[e^\sqrt{2x}\]


Differentiate each of the following from first principle:

\[a^\sqrt{x}\]


ex log a + ea long x + ea log a


\[\frac{( x^3 + 1)(x - 2)}{x^2}\] 


2 sec x + 3 cot x − 4 tan x


\[\text{ If } y = \left( \sin\frac{x}{2} + \cos\frac{x}{2} \right)^2 , \text{ find } \frac{dy}{dx} at x = \frac{\pi}{6} .\]


\[\text{ If } y = \left( \frac{2 - 3 \cos x}{\sin x} \right), \text{ find } \frac{dy}{dx} at x = \frac{\pi}{4}\]


sin2 


x−3 (5 + 3x


Differentiate each of the following functions by the product rule and the other method and verify that answer from both the methods is the same.

(x + 2) (x + 3)

 


(ax + b) (a + d)2


\[\frac{4x + 5 \sin x}{3x + 7 \cos x}\]


\[\frac{ax + b}{p x^2 + qx + r}\] 


If x < 2, then write the value of \[\frac{d}{dx}(\sqrt{x^2 - 4x + 4)}\] 


If f (x) =  \[\log_{x_2}\]write the value of f' (x). 


Mark the correct alternative in  of the following:
If\[f\left( x \right) = 1 + x + \frac{x^2}{2} + . . . + \frac{x^{100}}{100}\] then \[f'\left( 1 \right)\] is equal to 


Mark the correct alternative in  of the following:
If \[y = \frac{\sin\left( x + 9 \right)}{\cos x}\] then \[\frac{dy}{dx}\] at x = 0 is 


Mark the correct alternative in each of the following: 

If\[f\left( x \right) = \frac{x^n - a^n}{x - a}\] then \[f'\left( a \right)\] 


`(a + b sin x)/(c + d cos x)`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×