Advertisements
Advertisements
प्रश्न
\[\text{ If } y = \left( \sin\frac{x}{2} + \cos\frac{x}{2} \right)^2 , \text{ find } \frac{dy}{dx} at x = \frac{\pi}{6} .\]
उत्तर
\[\frac{dy}{dx} = \frac{d}{dx} \left( \sin \frac{x}{2} + \cos \frac{x}{2} \right)^2 \]
\[ = \frac{d}{dx}\left( \sin^2 \frac{x}{2} + \cos^2 \frac{x}{2} + 2 \sin \frac{x}{2}\cos \frac{x}{2} \right)\]
\[ = \frac{d}{dx}\left( 1 + \sin x \right)\]
\[ = \frac{d}{dx}\left( 1 \right) + \frac{d}{dx}\left( \sin x \right)\]
\[ = 0 + \cos x\]
\[ = \cos x\]
\[\frac{dy}{dx} at x =\frac{\pi}{6}= cos\frac{\pi}{6}=\frac{\sqrt{3}}{2}\]
APPEARS IN
संबंधित प्रश्न
Find the derivative of x–4 (3 – 4x–5).
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`1/(ax^2 + bx + c)`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
sinn x
Find the derivative of f (x) = tan x at x = 0
Find the derivative of the following function at the indicated point:
2 cos x at x =\[\frac{\pi}{2}\]
\[\frac{2x + 3}{x - 2}\]
Differentiate of the following from first principle:
(−x)−1
Differentiate each of the following from first principle:
sin x + cos x
Differentiate each of the following from first principle:
\[a^\sqrt{x}\]
\[\sin \sqrt{2x}\]
x4 − 2 sin x + 3 cos x
\[\frac{x^3}{3} - 2\sqrt{x} + \frac{5}{x^2}\]
\[\frac{2 x^2 + 3x + 4}{x}\]
\[\frac{a \cos x + b \sin x + c}{\sin x}\]
2 sec x + 3 cot x − 4 tan x
x2 ex log x
\[\frac{2^x \cot x}{\sqrt{x}}\]
x5 ex + x6 log x
x5 (3 − 6x−9)
(ax + b)n (cx + d)n
\[\frac{a x^2 + bx + c}{p x^2 + qx + r}\]
\[\frac{1}{a x^2 + bx + c}\]
\[\frac{x \sin x}{1 + \cos x}\]
\[\frac{a + \sin x}{1 + a \sin x}\]
\[\frac{{10}^x}{\sin x}\]
\[\frac{3^x}{x + \tan x}\]
\[\frac{x + \cos x}{\tan x}\]
Write the value of \[\lim_{x \to c} \frac{f(x) - f(c)}{x - c}\]
Write the value of \[\frac{d}{dx}\left( x \left| x \right| \right)\]
Write the value of \[\frac{d}{dx}\left( \log \left| x \right| \right)\]
If f (1) = 1, f' (1) = 2, then write the value of \[\lim_{x \to 1} \frac{\sqrt{f (x)} - 1}{\sqrt{x} - 1}\]
Write the derivative of f (x) = 3 |2 + x| at x = −3.
Mark the correct alternative in of the following:
If \[y = \frac{\sin\left( x + 9 \right)}{\cos x}\] then \[\frac{dy}{dx}\] at x = 0 is
Find the derivative of x2 cosx.
Find the derivative of f(x) = tan(ax + b), by first principle.