हिंदी

Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers): (ax + b)n - Mathematics

Advertisements
Advertisements

प्रश्न

Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

(ax + b)n

योग

उत्तर

Let f(x) = (ax + b)n . Accordingly, f(x + h) = {a(x + h) + b}n = (ax + ah + b)n

By first principle,

f(x) = `lim_(h->0) (f(x + h) - f(x))/h`

= `lim_(h->0) ((ax + ah + b)^n - (ax + b)^n)/h`

= `lim_(h->0) ((ax + b)^n (1 + (ah)/(ax + b))^n - (ax + b)^n)/h`

= `(ax + b)^n lim_(h->0)((1 + (ah)/(ax + b))^n - 1)/h`

= `(ax + b)^n lim_(h->0) 1/h [{1 + n}((ah)/(ax + b)) + (n(n - 1))/2 ((ah)/(ax + b))^2 + ...}-1]`    (Using binomial theorem)

= `(ax + b)^n lim_(h->0)1/h [n ((ah)/(ax + b)) + (n (n - 1)a^2h^2)/(2(ax + b)^2] + ("Terms containing higher degrees of h"))]`

= `(ax + b)^n lim_(h->0) [(na)/(ax + b) + (n(n + 1)a^2 h)/(2 (ax + b))^2 + ...]`

= `(ax + b)^n [(na)/(ax + b) + 0]`

= `na(ax + b)^n/((ax + b))`

= na (ax + b)n - 1

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 13: Limits and Derivatives - Miscellaneous Exercise [पृष्ठ ३१७]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 11
अध्याय 13 Limits and Derivatives
Miscellaneous Exercise | Q 12 | पृष्ठ ३१७

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

For the function

f(x) = `x^100/100 + x^99/99 + ...+ x^2/2 + x + 1`

Prove that f'(1) = 100 f'(0)


Find the derivative of x–3 (5 + 3x).


Find the derivative of `2/(x + 1) - x^2/(3x -1)`.


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(px+ q) (r/s + s)`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(1 + 1/x)/(1- 1/x)`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`1/(ax^2 + bx + c)`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

sinn x


Find the derivative of f (x) = x2 − 2 at x = 10


\[\frac{2}{x}\]


\[\frac{x + 1}{x + 2}\]


k xn


\[\frac{1}{\sqrt{3 - x}}\]


 x2 + x + 3


 (x2 + 1) (x − 5)


Differentiate  of the following from first principle: 

− x


Differentiate  of the following from first principle:

\[\cos\left( x - \frac{\pi}{8} \right)\]


Differentiate of the following from first principle:

 x cos x


Differentiate each of the following from first principle:

\[\sqrt{\sin 2x}\] 


Differentiate each of the following from first principle:

\[\frac{\sin x}{x}\]


Differentiate each of the following from first principle:

x2 e


Differentiate each of the following from first principle:

\[3^{x^2}\]


\[\tan \sqrt{x}\] 


\[\frac{x^3}{3} - 2\sqrt{x} + \frac{5}{x^2}\]


ex log a + ea long x + ea log a


\[\left( x + \frac{1}{x} \right)\left( \sqrt{x} + \frac{1}{\sqrt{x}} \right)\] 


a0 xn + a1 xn−1 + a2 xn2 + ... + an1 x + an


\[\frac{1}{\sin x} + 2^{x + 3} + \frac{4}{\log_x 3}\] 


(x sin x + cos x) (x cos x − sin x


logx2 x


Differentiate each of the following functions by the product rule and the other method and verify that answer from both the methods is the same.

(x + 2) (x + 3)

 


\[\frac{x + e^x}{1 + \log x}\] 


\[\frac{x}{1 + \tan x}\] 


\[\frac{a + b \sin x}{c + d \cos x}\] 


\[\frac{p x^2 + qx + r}{ax + b}\]


If f (x) = |x| + |x−1|, write the value of \[\frac{d}{dx}\left( f (x) \right)\]


Write the value of \[\frac{d}{dx}\left( \log \left| x \right| \right)\]


Mark the correct alternative in of the following:

If \[y = \sqrt{x} + \frac{1}{\sqrt{x}}\] then \[\frac{dy}{dx}\] at x = 1 is


Mark the correct alternative in of the following:
If \[f\left( x \right) = x^{100} + x^{99} + . . . + x + 1\]  then \[f'\left( 1 \right)\] is equal to 


Find the derivative of 2x4 + x.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×