Advertisements
Advertisements
प्रश्न
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
(ax + b)n
उत्तर
Let f(x) = (ax + b)n . Accordingly, f(x + h) = {a(x + h) + b}n = (ax + ah + b)n
By first principle,
f(x) = `lim_(h->0) (f(x + h) - f(x))/h`
= `lim_(h->0) ((ax + ah + b)^n - (ax + b)^n)/h`
= `lim_(h->0) ((ax + b)^n (1 + (ah)/(ax + b))^n - (ax + b)^n)/h`
= `(ax + b)^n lim_(h->0)((1 + (ah)/(ax + b))^n - 1)/h`
= `(ax + b)^n lim_(h->0) 1/h [{1 + n}((ah)/(ax + b)) + (n(n - 1))/2 ((ah)/(ax + b))^2 + ...}-1]` (Using binomial theorem)
= `(ax + b)^n lim_(h->0)1/h [n ((ah)/(ax + b)) + (n (n - 1)a^2h^2)/(2(ax + b)^2] + ("Terms containing higher degrees of h"))]`
= `(ax + b)^n lim_(h->0) [(na)/(ax + b) + (n(n + 1)a^2 h)/(2 (ax + b))^2 + ...]`
= `(ax + b)^n [(na)/(ax + b) + 0]`
= `na(ax + b)^n/((ax + b))`
= na (ax + b)n - 1
APPEARS IN
संबंधित प्रश्न
For the function
f(x) = `x^100/100 + x^99/99 + ...+ x^2/2 + x + 1`
Prove that f'(1) = 100 f'(0)
Find the derivative of x–3 (5 + 3x).
Find the derivative of `2/(x + 1) - x^2/(3x -1)`.
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(px+ q) (r/s + s)`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(1 + 1/x)/(1- 1/x)`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`1/(ax^2 + bx + c)`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
sinn x
Find the derivative of f (x) = x2 − 2 at x = 10
\[\frac{2}{x}\]
\[\frac{x + 1}{x + 2}\]
k xn
\[\frac{1}{\sqrt{3 - x}}\]
x2 + x + 3
(x2 + 1) (x − 5)
Differentiate of the following from first principle:
− x
Differentiate of the following from first principle:
\[\cos\left( x - \frac{\pi}{8} \right)\]
Differentiate of the following from first principle:
x cos x
Differentiate each of the following from first principle:
\[\sqrt{\sin 2x}\]
Differentiate each of the following from first principle:
\[\frac{\sin x}{x}\]
Differentiate each of the following from first principle:
x2 ex
Differentiate each of the following from first principle:
\[3^{x^2}\]
\[\tan \sqrt{x}\]
\[\frac{x^3}{3} - 2\sqrt{x} + \frac{5}{x^2}\]
ex log a + ea long x + ea log a
\[\left( x + \frac{1}{x} \right)\left( \sqrt{x} + \frac{1}{\sqrt{x}} \right)\]
a0 xn + a1 xn−1 + a2 xn−2 + ... + an−1 x + an.
\[\frac{1}{\sin x} + 2^{x + 3} + \frac{4}{\log_x 3}\]
(x sin x + cos x) (x cos x − sin x)
logx2 x
Differentiate each of the following functions by the product rule and the other method and verify that answer from both the methods is the same.
(x + 2) (x + 3)
\[\frac{x + e^x}{1 + \log x}\]
\[\frac{x}{1 + \tan x}\]
\[\frac{a + b \sin x}{c + d \cos x}\]
\[\frac{p x^2 + qx + r}{ax + b}\]
If f (x) = |x| + |x−1|, write the value of \[\frac{d}{dx}\left( f (x) \right)\]
Write the value of \[\frac{d}{dx}\left( \log \left| x \right| \right)\]
Mark the correct alternative in of the following:
If \[y = \sqrt{x} + \frac{1}{\sqrt{x}}\] then \[\frac{dy}{dx}\] at x = 1 is
Mark the correct alternative in of the following:
If \[f\left( x \right) = x^{100} + x^{99} + . . . + x + 1\] then \[f'\left( 1 \right)\] is equal to
Find the derivative of 2x4 + x.