Advertisements
Advertisements
Question
Integrate the function `(x+2)/sqrt(x^2 + 2x + 3)`
Solution
Let `I = int (x + 2)/ sqrt (x^2 + 2x + 3) dx`
`1/2 int (2x + 4)/ sqrt (x^2 + 2x + 3) dx`
`1/2 int (2x + 2 + 2)/sqrt (x^2 + 2x + 3) dx`
`1/2 int (2x + 2)/ sqrt(x^2 + 2x + 3) dx + dx/sqrt (x^2 + 2x + 3)`
Let I = I1 + I2 ....(i)
Where `I_1 = 1/2 int (2x + 2)/sqrt (x^2 + 2x + 3) dx`
Let x2 + 2x + 3 = t
⇒ (2x + 2) dx = dt
∴ `I_1 = 1/2 int dt/sqrtt `
`= 1/2 int t^(-1/2) dt = 1/2 xx 2t^(1/2)`
`= 1/2 xx 2 sqrt (x^2 + 2x + 3) + C_1`
`= sqrt (x^2 + 2x + 3) + C_1` .....(ii)
Also,
`I_2 = int dx/sqrt (x^2 + 2x + 3)`
`= int dx/sqrt (x^2 + 2x + 1 - 1 + 3)`
`= dx/ sqrt ((x + 1)^2 + sqrt( (2)^2))`
`log |(x + 1) + sqrt ((x + 1)^2 + 2)|`
`log |(x + 1) + sqrt (x^2 + 2x + 3)| + C_2` ....(iii)
Hence from (i), (ii) and (iii), we get
`I = sqrt (x^2 + 2x + 3) + log |(x + 1) + sqrt (x^2 + 2x + 3)| + C`
APPEARS IN
RELATED QUESTIONS
Evaluate: `int(5x-2)/(1+2x+3x^2)dx`
Find:
`int(x^3-1)/(x^3+x)dx`
Evaluate:
`int((x+3)e^x)/((x+5)^3)dx`
Integrate the function `(3x^2)/(x^6 + 1)`
Integrate the function `1/sqrt((2-x)^2 + 1)`
Integrate the function `1/(9x^2 + 6x + 5)`
Integrate the function `1/sqrt(7 - 6x - x^2)`
Integrate the function `1/sqrt((x -1)(x - 2))`
Integrate the function `1/sqrt((x - a)(x - b))`
Integrate the function `(x + 2)/sqrt(x^2 -1)`
Integrate the function `(5x - 2)/(1 + 2x + 3x^2)`
Integrate the function `(6x + 7)/sqrt((x - 5)(x - 4))`
Integrate the function `(x + 2)/sqrt(4x - x^2)`
Integrate the function `(x + 3)/(x^2 - 2x - 5)`
`int dx/(x^2 + 2x + 2)` equals:
Integrate the function:
`sqrt(1- 4x^2)`
Integrate the function:
`sqrt(x^2 + 4x +1)`
Integrate the function:
`sqrt(x^2 + 4x - 5)`
Integrate the function:
`sqrt(1+ x^2/9)`
`int sqrt(1+ x^2) dx` is equal to ______.
`int sqrt(x^2 - 8x + 7) dx` is equal to ______.
Evaluate : `int_2^3 3^x dx`
Find `int (2x)/(x^2 + 1)(x^2 + 2)^2 dx`
Integration of \[\frac{1}{1 + \left( \log_e x \right)^2}\] with respect to loge x is
\[\int\frac{8x + 13}{\sqrt{4x + 7}} \text{ dx }\]
If θ f(x) = `int_0^x t sin t dt` then `f^1(x)` is