Advertisements
Advertisements
Question
The integrating factor of the differential equation.
`(1 - y^2) dx/dy + yx = ay(-1 < y < 1)` is ______.
Options
`1/(y^2 - 1)`
`1/sqrt(y^2 - 1)`
`1/(1 - y^2)`
`1/sqrt(1 - y^2)`
Solution
The integrating factor of the differential equation.
`(1 - y^2) dx/dy + yx = ay(-1 < y < 1)` is `underline(1/sqrt(1 - y^2)).`
Explanation:
The differential equation is,
`(1 – y^2)dy/dx + yx = ay`
or `dx/dy + y/(1 - y^2) x = y/(1 - y^2)`
Comparing with `dx/dy + Px = Q`,
`P = y/(1 - y^2), Q = y/(1 - y^2)`
`int P dx = int y/(1 - y^2) dy`
`= e^(- 1/2 int (- 2y)/(1 - y^2) dy)`
Let `= - 1/2 int (- 2y)/(1 - y^2) dy`
`1 - y^2` = t
∴ - 2y dy = dt
`= - 1/2 int dt/t = - 1/2 log t`
`= - 1/2 log (1 - y^2)`
`= log 1/sqrt(1 - y^2)`
`I.F. = e^(int P dx) = e^(log 1 sqrt(1 - y^2))`
`= 1/sqrt(1 - y^2)`
APPEARS IN
RELATED QUESTIONS
Find the the differential equation for all the straight lines, which are at a unit distance from the origin.
For the differential equation, find the general solution:
`(x + y) dy/dx = 1`
For the differential equation given, find a particular solution satisfying the given condition:
`dy/dx - 3ycotx = sin 2x; y = 2` when `x = pi/2`
Find the equation of a curve passing through the point (0, 2) given that the sum of the coordinates of any point on the curve exceeds the magnitude of the slope of the tangent to the curve at that point by 5.
The population of a village increases continuously at the rate proportional to the number of its inhabitants present at any time. If the population of the village was 20000 in 1999 and 25000 in the year 2004, what will be the population of the village in 2009?
Solve the differential equation `x dy/dx + y = x cos x + sin x`, given that y = 1 when `x = pi/2`
x dy = (2y + 2x4 + x2) dx
\[\frac{dy}{dx}\] + y cos x = sin x cos x
Find the general solution of the differential equation \[x\frac{dy}{dx} + 2y = x^2\]
Solve the differential equation \[\left( y + 3 x^2 \right)\frac{dx}{dy} = x\]
Find the particular solution of the differential equation \[\frac{dx}{dy} + x \cot y = 2y + y^2 \cot y, y ≠ 0\] given that x = 0 when \[y = \frac{\pi}{2}\].
Solve the following differential equation: \[\left( \cot^{- 1} y + x \right) dy = \left( 1 + y^2 \right) dx\] .
Solve the differential equation \[\frac{dy}{dx}\] + y cot x = 2 cos x, given that y = 0 when x = \[\frac{\pi}{2}\] .
Find the integerating factor of the differential equation `x(dy)/(dx) - 2y = 2x^2`
Solve the following differential equation:
`("x" + 2"y"^3) "dy"/"dx" = "y"`
Solve the following differential equation:
`"dy"/"dx" + "y" * sec "x" = tan "x"`
Solve the following differential equation:
y dx + (x - y2) dy = 0
Solve the following differential equation:
`(1 - "x"^2) "dy"/"dx" + "2xy" = "x"(1 - "x"^2)^(1/2)`
Find the equation of the curve passing through the point `(3/sqrt2, sqrt2)` having a slope of the tangent to the curve at any point (x, y) is -`"4x"/"9y"`.
If the slope of the tangent to the curve at each of its point is equal to the sum of abscissa and the product of the abscissa and ordinate of the point. Also, the curve passes through the point (0, 1). Find the equation of the curve.
Form the differential equation of all circles which pass through the origin and whose centers lie on X-axis.
The integrating factor of `(dy)/(dx) + y` = e–x is ______.
`(x + 2y^3 ) dy/dx = y`
Find the general solution of the equation `("d"y)/("d"x) - y` = 2x.
Solution: The equation `("d"y)/("d"x) - y` = 2x
is of the form `("d"y)/("d"x) + "P"y` = Q
where P = `square` and Q = `square`
∴ I.F. = `"e"^(int-"d"x)` = e–x
∴ the solution of the linear differential equation is
ye–x = `int 2x*"e"^-x "d"x + "c"`
∴ ye–x = `2int x*"e"^-x "d"x + "c"`
= `2{x int"e"^-x "d"x - int square "d"x* "d"/("d"x) square"d"x} + "c"`
= `2{x ("e"^-x)/(-1) - int ("e"^-x)/(-1)*1"d"x} + "c"`
∴ ye–x = `-2x*"e"^-x + 2int"e"^-x "d"x + "c"`
∴ e–xy = `-2x*"e"^-x+ 2 square + "c"`
∴ `y + square + square` = cex is the required general solution of the given differential equation
The integrating factor of the differential equation (1 + x2)dt = (tan-1 x - t)dx is ______.
Integrating factor of `dy/dx + y = x^2 + 5` is ______
Which of the following is a second order differential equation?
The integrating factor of differential equation `(1 - y)^2 (dx)/(dy) + yx = ay(-1 < y < 1)`
Let y = y(x), x > 1, be the solution of the differential equation `(x - 1)(dy)/(dx) + 2xy = 1/(x - 1)`, with y(2) = `(1 + e^4)/(2e^4)`. If y(3) = `(e^α + 1)/(βe^α)`, then the value of α + β is equal to ______.
If y = y(x) is the solution of the differential equation, `(dy)/(dx) + 2ytanx = sinx, y(π/3)` = 0, then the maximum value of the function y (x) over R is equal to ______.
Solve the differential equation `dy/dx+2xy=x` by completing the following activity.
Solution: `dy/dx+2xy=x` ...(1)
This is the linear differential equation of the form `dy/dx +Py =Q,"where"`
`P=square` and Q = x
∴ `I.F. = e^(intPdx)=square`
The solution of (1) is given by
`y.(I.F.)=intQ(I.F.)dx+c=intsquare dx+c`
∴ `ye^(x^2) = square`
This is the general solution.
The slope of tangent at any point on the curve is 3. lf the curve passes through (1, 1), then the equation of curve is ______.
The slope of the tangent to the curve x = sin θ and y = cos 2θ at θ = `π/6` is ______.