English

RD Sharma solutions for Mathematics [English] Class 11 chapter 12 - Mathematical Induction [Latest edition]

Advertisements

Chapters

RD Sharma solutions for Mathematics [English] Class 11 chapter 12 - Mathematical Induction - Shaalaa.com
Advertisements

Solutions for Chapter 12: Mathematical Induction

Below listed, you can find solutions for Chapter 12 of CBSE, Karnataka Board PUC RD Sharma for Mathematics [English] Class 11.


Exercise 12.1Exercise 12.2
Exercise 12.1 [Page 3]

RD Sharma solutions for Mathematics [English] Class 11 12 Mathematical Induction Exercise 12.1 [Page 3]

Exercise 12.1 | Q 1 | Page 3

If P (n) is the statement "n(n + 1) is even", then what is P(3)?

Exercise 12.1 | Q 2 | Page 3

If P (n) is the statement "n3 + n is divisible by 3", prove that P (3) is true but P (4) is not true.

Exercise 12.1 | Q 3 | Page 3

If P (n) is the statement "2n ≥ 3n" and if P (r) is true, prove that P (r + 1) is true.

 
Exercise 12.1 | Q 4 | Page 3

If P (n) is the statement "n2 + n is even", and if P (r) is true, then P (r + 1) is true.

 
Exercise 12.1 | Q 5 | Page 3

Given an example of a statement P (n) such that it is true for all n ∈ N.

 
Exercise 12.1 | Q 6 | Page 3

If P (n) is the statement "n2 − n + 41 is prime", prove that P (1), P (2) and P (3) are true. Prove also that P (41) is not true.

Exercise 12.1 | Q 7 | Page 3

Give an example of a statement P(n) which is true for all n ≥ 4 but P(1), P(2) and P(3) are not true. Justify your answer.

Exercise 12.2 [Pages 27 - 29]

RD Sharma solutions for Mathematics [English] Class 11 12 Mathematical Induction Exercise 12.2 [Pages 27 - 29]

Exercise 12.2 | Q 1 | Page 27

1 + 2 + 3 + ... + n =  \[\frac{n(n + 1)}{2}\] i.e. the sum of the first n natural numbers is \[\frac{n(n + 1)}{2}\] .

Exercise 12.2 | Q 2 | Page 27

12 + 22 + 32 + ... + n2 =\[\frac{n(n + 1)(2n + 1)}{6}\] .

 
Exercise 12.2 | Q 3 | Page 27

1 + 3 + 32 + ... + 3n−1 = \[\frac{3^n - 1}{2}\]

 
Exercise 12.2 | Q 4 | Page 27

\[\frac{1}{1 . 2} + \frac{1}{2 . 3} + \frac{1}{3 . 4} + . . . + \frac{1}{n(n + 1)} = \frac{n}{n + 1}\]

Exercise 12.2 | Q 5 | Page 27

1 + 3 + 5 + ... + (2n − 1) = n2 i.e., the sum of first n odd natural numbers is n2.

 
Exercise 12.2 | Q 6 | Page 27

\[\frac{1}{2 . 5} + \frac{1}{5 . 8} + \frac{1}{8 . 11} + . . . + \frac{1}{(3n - 1)(3n + 2)} = \frac{n}{6n + 4}\]

 

Exercise 12.2 | Q 7 | Page 27

\[\frac{1}{1 . 4} + \frac{1}{4 . 7} + \frac{1}{7 . 10} + . . . + \frac{1}{(3n - 2)(3n + 1)} = \frac{n}{3n + 1}\]

Exercise 12.2 | Q 8 | Page 27

\[\frac{1}{3 . 5} + \frac{1}{5 . 7} + \frac{1}{7 . 9} + . . . + \frac{1}{(2n + 1)(2n + 3)} = \frac{n}{3(2n + 3)}\]

Exercise 12.2 | Q 9 | Page 27

\[\frac{1}{3 . 7} + \frac{1}{7 . 11} + \frac{1}{11 . 5} + . . . + \frac{1}{(4n - 1)(4n + 3)} = \frac{n}{3(4n + 3)}\] 

Exercise 12.2 | Q 10 | Page 27

1.2 + 2.22 + 3.23 + ... + n.2= (n − 1) 2n+1+2

 
Exercise 12.2 | Q 11 | Page 27

2 + 5 + 8 + 11 + ... + (3n − 1) = \[\frac{1}{2}n(3n + 1)\]

 
Exercise 12.2 | Q 12 | Page 27

1.3 + 2.4 + 3.5 + ... + n. (n + 2) = \[\frac{1}{6}n(n + 1)(2n + 7)\]

 
Exercise 12.2 | Q 13 | Page 27

1.3 + 3.5 + 5.7 + ... + (2n − 1) (2n + 1) =\[\frac{n(4 n^2 + 6n - 1)}{3}\]

 
Exercise 12.2 | Q 14 | Page 27

1.2 + 2.3 + 3.4 + ... + n (n + 1) = \[\frac{n(n + 1)(n + 2)}{3}\]

 
Exercise 12.2 | Q 15 | Page 27

\[\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + . . . + \frac{1}{2^n} = 1 - \frac{1}{2^n}\]

Exercise 12.2 | Q 16 | Page 27

12 + 32 + 52 + ... + (2n − 1)2 = \[\frac{1}{3}n(4 n^2 - 1)\]

 
Exercise 12.2 | Q 17 | Page 27

a + ar + ar2 + ... + arn−1 =  \[a\left( \frac{r^n - 1}{r - 1} \right), r \neq 1\]

 
Exercise 12.2 | Q 18 | Page 28

a + (a + d) + (a + 2d) + ... (a + (n − 1) d) = \[\frac{n}{2}\left[ 2a + (n - 1)d \right]\]

 

Exercise 12.2 | Q 19 | Page 28

52n −1 is divisible by 24 for all n ∈ N.

Exercise 12.2 | Q 20 | Page 28

32n+7 is divisible by 8 for all n ∈ N.

 
Exercise 12.2 | Q 21 | Page 28

52n+2 −24n −25 is divisible by 576 for all n ∈ N.

 
Exercise 12.2 | Q 22 | Page 28

32n+2 −8n − 9 is divisible by 8 for all n ∈ N.

Exercise 12.2 | Q 23 | Page 28

(ab)n = anbn for all n ∈ N. 

 
Exercise 12.2 | Q 24 | Page 28

n(n + 1) (n + 5) is a multiple of 3 for all n ∈ N.

 
Exercise 12.2 | Q 25 | Page 28

72n + 23n−3. 3n−1 is divisible by 25 for all n ∈ N.

 
Exercise 12.2 | Q 26 | Page 28

2.7n + 3.5n − 5 is divisible by 24 for all n ∈ N.

Exercise 12.2 | Q 27 | Page 28

11n+2 + 122n+1 is divisible by 133 for all n ∈ N.

 
Exercise 12.2 | Q 28 | Page 28

Given \[a_1 = \frac{1}{2}\left( a_0 + \frac{A}{a_0} \right), a_2 = \frac{1}{2}\left( a_1 + \frac{A}{a_1} \right) \text{ and }  a_{n + 1} = \frac{1}{2}\left( a_n + \frac{A}{a_n} \right)\] for n ≥ 2, where a > 0, A > 0.
Prove that \[\frac{a_n - \sqrt{A}}{a_n + \sqrt{A}} = \left( \frac{a_1 - \sqrt{A}}{a_1 + \sqrt{A}} \right) 2^{n - 1}\]

 
Exercise 12.2 | Q 29 | Page 28

Prove that n3 - 7+ 3 is divisible by 3 for all n \[\in\] N .

  
Exercise 12.2 | Q 30 | Page 28

Prove that 1 + 2 + 22 + ... + 2n = 2n+1 - 1 for all \[\in\] N .

 
Exercise 12.2 | Q 31 | Page 28

7 + 77 + 777 + ... + 777 \[{. . . . . . . . . . .}_{n - \text{ digits } } 7 = \frac{7}{81}( {10}^{n + 1} - 9n - 10)\]

 
Exercise 12.2 | Q 32 | Page 28
\[\frac{n^7}{7} + \frac{n^5}{5} + \frac{n^3}{3} + \frac{n^2}{2} - \frac{37}{210}n\] is a positive integer for all n ∈ N.  

 

Exercise 12.2 | Q 33 | Page 28
\[\frac{n^{11}}{11} + \frac{n^5}{5} + \frac{n^3}{3} + \frac{62}{165}n\] is a positive integer for all n ∈ N

 

Exercise 12.2 | Q 34 | Page 28
\[\frac{1}{2}\tan\left( \frac{x}{2} \right) + \frac{1}{4}\tan\left( \frac{x}{4} \right) + . . . + \frac{1}{2^n}\tan\left( \frac{x}{2^n} \right) = \frac{1}{2^n}\cot\left( \frac{x}{2^n} \right) - \cot x\] for all n ∈ and  \[0 < x < \frac{\pi}{2}\]

 

Exercise 12.2 | Q 35 | Page 28

Let P(n) be the statement : 2n ≥ 3n. If P(r) is true, show that P(r + 1) is true. Do you conclude that P(n) is true for all n ∈ N

Exercise 12.2 | Q 36 | Page 28

\[\frac{(2n)!}{2^{2n} (n! )^2} \leq \frac{1}{\sqrt{3n + 1}}\]  for all n ∈ N .

Exercise 12.2 | Q 37 | Page 28
\[1 + \frac{1}{4} + \frac{1}{9} + \frac{1}{16} + . . . + \frac{1}{n^2} < 2 - \frac{1}{n}\] for all n ≥ 2, n ∈ 

 

Exercise 12.2 | Q 38 | Page 28

x2n−1 + y2n−1 is divisible by x + y for all n ∈ N.

 
Exercise 12.2 | Q 39 | Page 28
\[\sin x + \sin 3x + . . . + \sin (2n - 1)x = \frac{\sin^2 nx}{\sin x}\]

 

Exercise 12.2 | Q 40 | Page 29
\[\text{ Prove that } \cos\alpha + \cos\left( \alpha + \beta \right) + \cos\left( \alpha + 2\beta \right) + . . . + \cos\left[ \alpha + \left( n - 1 \right)\beta \right] = \frac{\cos\left\{ \alpha + \left( \frac{n - 1}{2} \right)\beta \right\}\sin\left( \frac{n\beta}{2} \right)}{\sin\left( \frac{\beta}{2} \right)} \text{ for all n } \in N .\]

 

Exercise 12.2 | Q 41 | Page 29
\[\text{ Prove that }  \frac{1}{n + 1} + \frac{1}{n + 2} + . . . + \frac{1}{2n} > \frac{13}{24}, \text{ for all natural numbers } n > 1 .\]

 

Exercise 12.2 | Q 42 | Page 29

\[\text{ Given }  a_1 = \frac{1}{2}\left( a_0 + \frac{A}{a_0} \right), a_2 = \frac{1}{2}\left( a_1 + \frac{A}{a_1} \right) \text{ and } a_{n + 1} = \frac{1}{2}\left( a_n + \frac{A}{a_n} \right) \text{ for }  n \geq 2, \text{ where } a > 0, A > 0 . \]
\[\text{ Prove that } \frac{a_n - \sqrt{A}}{a_n + \sqrt{A}} = \left( \frac{a_1 - \sqrt{A}}{a_1 + \sqrt{A}} \right) 2^{n - 1} .\]

Exercise 12.2 | Q 43 | Page 29

\[\text{ Let } P\left( n \right) \text{ be the statement } : 2^n \geq 3n . \text{ If } P\left( r \right) \text{ is true, then show that } P\left( r + 1 \right) \text{ is true . Do you conclude that } P\left( n \right)\text{  is true for all n }  \in N?\]

Exercise 12.2 | Q 44 | Page 29

Show by the Principle of Mathematical induction that the sum Sn of then terms of the series  \[1^2 + 2 \times 2^2 + 3^2 + 2 \times 4^2 + 5^2 + 2 \times 6^2 + 7^2 + . . .\] is given by \[S_n = \binom{\frac{n \left( n + 1 \right)^2}{2}, \text{ if n is even} }{\frac{n^2 \left( n + 1 \right)}{2}, \text{ if n is odd } }\]

 

Exercise 12.2 | Q 45 | Page 29

Prove that the number of subsets of a set containing n distinct elements is 2n, for all n \[\in\] N .

 
Exercise 12.2 | Q 46 | Page 29

\[\text{ A sequence }  a_1 , a_2 , a_3 , . . . \text{ is defined by letting }  a_1 = 3 \text{ and } a_k = 7 a_{k - 1} \text{ for all natural numbers } k \geq 2 . \text{ Show that } a_n = 3 \cdot 7^{n - 1} \text{ for all } n \in N .\]

Exercise 12.2 | Q 47 | Page 29

\[\text { A sequence  } x_1 , x_2 , x_3 , . . . \text{ is defined by letting } x_1 = 2 \text{ and }  x_k = \frac{x_{k - 1}}{k} \text{ for all natural numbers } k, k \geq 2 . \text{ Show that }  x_n = \frac{2}{n!} \text{ for all } n \in N .\]

Exercise 12.2 | Q 48 | Page 29

\[\text{ A sequence } x_0 , x_1 , x_2 , x_3 , . . . \text{ is defined by letting } x_0 = 5 and x_k = 4 + x_{k - 1}\text{  for all natural number k . } \]
\[\text{ Show that } x_n = 5 + 4n \text{ for all n }  \in N \text{ using mathematical induction .} \]

Exercise 12.2 | Q 49 | Page 29
\[\text{ Using principle of mathematical induction, prove that } \sqrt{n} < \frac{1}{\sqrt{1}} + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} + . . . + \frac{1}{\sqrt{n}} \text{ for all natural numbers } n \geq 2 .\]

 

Exercise 12.2 | Q 50 | Page 29

\[\text{ The distributive law from algebra states that for all real numbers}  c, a_1 \text{ and }  a_2 , \text{ we have }  c\left( a_1 + a_2 \right) = c a_1 + c a_2 . \]
\[\text{ Use this law and mathematical induction to prove that, for all natural numbers, } n \geq 2, if c, a_1 , a_2 , . . . , a_n \text{ are any real numbers, then } \]
\[c\left( a_1 + a_2 + . . . + a_n \right) = c a_1 + c a_2 + . . . + c a_n\]

Solutions for 12: Mathematical Induction

Exercise 12.1Exercise 12.2
RD Sharma solutions for Mathematics [English] Class 11 chapter 12 - Mathematical Induction - Shaalaa.com

RD Sharma solutions for Mathematics [English] Class 11 chapter 12 - Mathematical Induction

Shaalaa.com has the CBSE, Karnataka Board PUC Mathematics Mathematics [English] Class 11 CBSE, Karnataka Board PUC solutions in a manner that help students grasp basic concepts better and faster. The detailed, step-by-step solutions will help you understand the concepts better and clarify any confusion. RD Sharma solutions for Mathematics Mathematics [English] Class 11 CBSE, Karnataka Board PUC 12 (Mathematical Induction) include all questions with answers and detailed explanations. This will clear students' doubts about questions and improve their application skills while preparing for board exams.

Further, we at Shaalaa.com provide such solutions so students can prepare for written exams. RD Sharma textbook solutions can be a core help for self-study and provide excellent self-help guidance for students.

Concepts covered in Mathematics [English] Class 11 chapter 12 Mathematical Induction are Motivation, Principle of Mathematical Induction.

Using RD Sharma Mathematics [English] Class 11 solutions Mathematical Induction exercise by students is an easy way to prepare for the exams, as they involve solutions arranged chapter-wise and also page-wise. The questions involved in RD Sharma Solutions are essential questions that can be asked in the final exam. Maximum CBSE, Karnataka Board PUC Mathematics [English] Class 11 students prefer RD Sharma Textbook Solutions to score more in exams.

Get the free view of Chapter 12, Mathematical Induction Mathematics [English] Class 11 additional questions for Mathematics Mathematics [English] Class 11 CBSE, Karnataka Board PUC, and you can use Shaalaa.com to keep it handy for your exam preparation.

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×