English

Integrate the function: x2+1[log(x2+1)-2logx]x4 - Mathematics

Advertisements
Advertisements

Question

Integrate the function:

`(sqrt(x^2 +1) [log(x^2 + 1) - 2log x])/x^4`

Sum

Solution

Let `I = int (sqrt(x^2 + 1)[log (x^2 + 1) - 2 log x])/x^4`dx

`= int (sqrt(x^2 + 1)[log (x^2 + 1) - log x^2])/x^4`dx

`= int sqrt(x^2 + 1)/x^4 * log ((x^2 + 1)/x^2)`dx

`= int (sqrt(x^2 + 1))/x^4 log (1 + 1/x^2)`dx

Putting x = tan θ,

⇒ dx = sec2 θ dθ

∴ I = `sqrt(1 + tan^2 theta)/(tan^4 theta) log  (1 + 1/(tan^2  theta)) * sec^2 θ  dθ`

`= int (sec θ)/(tan^4 theta) * [log (1 + cot^2 theta)] sec^2 θ  d θ`

`= int [log (cosec^2 θ)] * (cos^4 θ)/(sin^4 θ) * sec^3 θ  dθ`

`= - 2 int (log sin θ) * (cos θ)/(sin^4 θ) dθ`

Put sin θ = t

cos θ dθ = dt

∴ I = `- 2 int (log t) * 1/t^4  dt`

Let us take log t as the first function.

I = `- 2 [(log t) int t^-4 dt - int (d/dt (log t) int t^-4 dt)dt]`

`= - 2 [log t(- 1/(3t^3)) - int 1/t(- 1/(3t^3))dt]`

`= -2 [- (log t)/3t^3 + 1/3 int t^-4 dt]`

`= 2/3 (log t)/t^3 - 2/3 (- 1/3 t^-3) + C`

`= 2/9 [(3 log t)/t^3 + 1/t^3] + C`

`= 2/9 [(3 log t + 1)/t^3] + C`

Now t = sin θ and tan θ = x

`therefore t = sin theta = x/(sqrt(1 + x^2))`

`therefore I = 2/9 [(3 log (x/(sqrt(x^2 + 1))) + 1)/(x/sqrt(1 + x^2))^3] + C`

`= (2 (1 + x))^(3/2)/(9x^3) [3 log  x/(sqrt(x^2 + 1)) + 1] + C`

`= 2/9 (1 + x^2)^(3/2)/x^3 * 3 log ((1 + x^2)/x^2)^(- 1/2) + 2/9 (1 + x^2)^(3/2)/x^3 + C`

`= - 1/3 (1 + 1/x^2)^(3/2) log (1 + 1/x^2) + 2/9 (1 + 1/x^2)^(3/2) + C`

`= - 1/3 (1 + 1/x^2)^(3/2) [log (1 + 1/x^2) - 2/3] + C`

shaalaa.com
  Is there an error in this question or solution?
Chapter 7: Integrals - Exercise 7.12 [Page 353]

APPEARS IN

NCERT Mathematics [English] Class 12
Chapter 7 Integrals
Exercise 7.12 | Q 24 | Page 353

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Write the antiderivative of `(3sqrtx+1/sqrtx).`


 

Find :`int(x^2+x+1)/((x^2+1)(x+2))dx`

 

If `f(x) =∫_0^xt sin t dt` , then write the value of f ' (x).


Find an anti derivative (or integral) of the following function by the method of inspection.

Cos 3x


Find an anti derivative (or integral) of the following function by the method of inspection.

(axe + b)2


Find the following integrals:

`int (4e^(3x) + 1)`


Find the following integrals:

`intx^2 (1 - 1/x^2)dx`


Find the following integrals:

`int(sqrtx - 1/sqrtx)^2 dx`


Find the following integrals:

`int (x^3 + 3x + 4)/sqrtx dx`


Find the following integrals:

`int (x^3 - x^2 + x - 1)/(x - 1) dx`


Find the following integrals:

`intsqrtx( 3x^2 + 2x + 3) dx`


Find the following integrals:

`int(2x^2 - 3sinx + 5sqrtx) dx`


If `d/dx f(x) = 4x^3 - 3/x^4` such that f(2) = 0, then f(x) is ______.


Integrate the function:

`1/(xsqrt(ax - x^2)) ["Hint : Put x" = a/t]`


Integrate the function:

`sinx/(sin (x - a))`


Integrate the function:

`1/(cos (x+a) cos(x+b))`


Integrate the function:

`cos^3 xe^(log sinx)`


Integrate the function:

f' (ax + b) [f (ax + b)]n


Integrate the functions `(sin^(-1) sqrtx - cos^(-1) sqrtx)/ (sin^(-1) sqrtx + cos^(-1) sqrtx) , x in [0,1]`


Integrate the function:

`sqrt((1-sqrtx)/(1+sqrtx))`


Evaluate: `int  (1 - cos x)/(cos x(1 + cos x))  dx`


The anti derivative of `(sqrt(x) + 1/sqrt(x))` is equals:


If `d/(dx) f(x) = 4x^3 - 3/x^4`, such that `f(2) = 0`, then `f(x)` is


`int (dx)/(sin^2x cos^2x) dx` equals


`int (sin^2x - cos^2x)/(sin^2x cos^2x) dx` is equal to


`int (e^x (1 + x))/(cos^2 (xe^x)) dx` equal


`int (dx)/sqrt(9x - 4x^2)` equal


`int (dx)/sqrt(9x - 4x^2)` equals


`f x^2 e^(x^3) dx` equals


`int e^x sec x(1 + tanx) dx` equals


`int sqrt(1 + x^2) dx` is equal to


`d/(dx)x^(logx)` = ______.


`int (dx)/sqrt(5x - 6 - x^2)` equals ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×