Advertisements
Advertisements
Question
Integrate the function:
`(sqrt(x^2 +1) [log(x^2 + 1) - 2log x])/x^4`
Solution
Let `I = int (sqrt(x^2 + 1)[log (x^2 + 1) - 2 log x])/x^4`dx
`= int (sqrt(x^2 + 1)[log (x^2 + 1) - log x^2])/x^4`dx
`= int sqrt(x^2 + 1)/x^4 * log ((x^2 + 1)/x^2)`dx
`= int (sqrt(x^2 + 1))/x^4 log (1 + 1/x^2)`dx
Putting x = tan θ,
⇒ dx = sec2 θ dθ
∴ I = `sqrt(1 + tan^2 theta)/(tan^4 theta) log (1 + 1/(tan^2 theta)) * sec^2 θ dθ`
`= int (sec θ)/(tan^4 theta) * [log (1 + cot^2 theta)] sec^2 θ d θ`
`= int [log (cosec^2 θ)] * (cos^4 θ)/(sin^4 θ) * sec^3 θ dθ`
`= - 2 int (log sin θ) * (cos θ)/(sin^4 θ) dθ`
Put sin θ = t
cos θ dθ = dt
∴ I = `- 2 int (log t) * 1/t^4 dt`
Let us take log t as the first function.
I = `- 2 [(log t) int t^-4 dt - int (d/dt (log t) int t^-4 dt)dt]`
`= - 2 [log t(- 1/(3t^3)) - int 1/t(- 1/(3t^3))dt]`
`= -2 [- (log t)/3t^3 + 1/3 int t^-4 dt]`
`= 2/3 (log t)/t^3 - 2/3 (- 1/3 t^-3) + C`
`= 2/9 [(3 log t)/t^3 + 1/t^3] + C`
`= 2/9 [(3 log t + 1)/t^3] + C`
Now t = sin θ and tan θ = x
`therefore t = sin theta = x/(sqrt(1 + x^2))`
`therefore I = 2/9 [(3 log (x/(sqrt(x^2 + 1))) + 1)/(x/sqrt(1 + x^2))^3] + C`
`= (2 (1 + x))^(3/2)/(9x^3) [3 log x/(sqrt(x^2 + 1)) + 1] + C`
`= 2/9 (1 + x^2)^(3/2)/x^3 * 3 log ((1 + x^2)/x^2)^(- 1/2) + 2/9 (1 + x^2)^(3/2)/x^3 + C`
`= - 1/3 (1 + 1/x^2)^(3/2) log (1 + 1/x^2) + 2/9 (1 + 1/x^2)^(3/2) + C`
`= - 1/3 (1 + 1/x^2)^(3/2) [log (1 + 1/x^2) - 2/3] + C`
APPEARS IN
RELATED QUESTIONS
Write the antiderivative of `(3sqrtx+1/sqrtx).`
Find :`int(x^2+x+1)/((x^2+1)(x+2))dx`
If `f(x) =∫_0^xt sin t dt` , then write the value of f ' (x).
Find an anti derivative (or integral) of the following function by the method of inspection.
Cos 3x
Find an anti derivative (or integral) of the following function by the method of inspection.
(axe + b)2
Find the following integrals:
`int (4e^(3x) + 1)`
Find the following integrals:
`intx^2 (1 - 1/x^2)dx`
Find the following integrals:
`int(sqrtx - 1/sqrtx)^2 dx`
Find the following integrals:
`int (x^3 + 3x + 4)/sqrtx dx`
Find the following integrals:
`int (x^3 - x^2 + x - 1)/(x - 1) dx`
Find the following integrals:
`intsqrtx( 3x^2 + 2x + 3) dx`
Find the following integrals:
`int(2x^2 - 3sinx + 5sqrtx) dx`
If `d/dx f(x) = 4x^3 - 3/x^4` such that f(2) = 0, then f(x) is ______.
Integrate the function:
`1/(xsqrt(ax - x^2)) ["Hint : Put x" = a/t]`
Integrate the function:
`sinx/(sin (x - a))`
Integrate the function:
`1/(cos (x+a) cos(x+b))`
Integrate the function:
`cos^3 xe^(log sinx)`
Integrate the function:
f' (ax + b) [f (ax + b)]n
Integrate the functions `(sin^(-1) sqrtx - cos^(-1) sqrtx)/ (sin^(-1) sqrtx + cos^(-1) sqrtx) , x in [0,1]`
Integrate the function:
`sqrt((1-sqrtx)/(1+sqrtx))`
Evaluate: `int (1 - cos x)/(cos x(1 + cos x)) dx`
The anti derivative of `(sqrt(x) + 1/sqrt(x))` is equals:
If `d/(dx) f(x) = 4x^3 - 3/x^4`, such that `f(2) = 0`, then `f(x)` is
`int (dx)/(sin^2x cos^2x) dx` equals
`int (sin^2x - cos^2x)/(sin^2x cos^2x) dx` is equal to
`int (e^x (1 + x))/(cos^2 (xe^x)) dx` equal
`int (dx)/sqrt(9x - 4x^2)` equal
`int (dx)/sqrt(9x - 4x^2)` equals
`f x^2 e^(x^3) dx` equals
`int e^x sec x(1 + tanx) dx` equals
`int sqrt(1 + x^2) dx` is equal to
`d/(dx)x^(logx)` = ______.
`int (dx)/sqrt(5x - 6 - x^2)` equals ______.