English

Classify the Following Functions as Injection, Surjection Or Bijection : F : R → R, Defined By F(X) = X3 − X - Mathematics

Advertisements
Advertisements

Question

Classify the following function as injection, surjection or bijection :

 f : R → R, defined by f(x) = x3 − x

Sum

Solution

f : R → R, defined by f(x) = x3 − x

Injection test :
Let x and y be any two elements in the domain (R), such that f(x) = f(y).
f(x= f(y)

x3x=y3y

Here, we cannot say x=y.

For example, x=1 and y=-1

x3=110

y3y=(1)3(1)1+1=0

So, 1 and -1 have the same image 0 .

So, f is not an injection.

Surjection test :

Let y be any element in the co-domain (R), such that f(x) = y for some element x in R (domain).

f(x) = y

x3 − y

By observation we can say that there exist some x in R, such that  x- x = y.

So, f is a surjection and  f is not a bijection.

 

shaalaa.com
  Is there an error in this question or solution?
Chapter 2: Functions - Exercise 2.1 [Page 31]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 2 Functions
Exercise 2.1 | Q 5.1 | Page 31

RELATED QUESTIONS

Check the injectivity and surjectivity of the following function:

f: N → N given by f(x) = x2


Check the injectivity and surjectivity of the following function:

f: Z → Z given by f(x) = x2


Show that the function f: R → R given by f(x) = x3 is injective.


Let A = {−1, 0, 1, 2}, B = {−4, −2, 0, 2} and f, g: A → B be functions defined by f(x) = x2 − x, x ∈ A and g(x) = `2|x - 1/2|- 1, x in A`. Are f and g equal?

Justify your answer. (Hint: One may note that two functions f: A → B and g: A → B such that f(a) = g(a) ∀ a ∈ A are called equal functions).


Classify the following function as injection, surjection or bijection :

f : Z → Z, defined by f(x) = x2 + x


Classify the following function as injection, surjection or bijection :

f : Q − {3} → Q, defined by `f (x) = (2x +3)/(x-3)`


Classify the following function as injection, surjection or bijection :

f : R → R, defined by f(x) = 3 − 4x


Let A = {1, 2, 3}. Write all one-one from A to itself.


Let f = {(1, −1), (4, −2), (9, −3), (16, 4)} and g = {(−1, −2), (−2, −4), (−3, −6), (4, 8)}. Show that gof is defined while fog is not defined. Also, find gof.


Give examples of two functions f : N → Z and g : Z → Z, such that gof is injective but gis not injective.


Let A = {1, 2, 3, 4}; B = {3, 5, 7, 9}; C = {7, 23, 47, 79} and f : A → Bg : B → C be defined as f(x) = 2x + 1 and g(x) = x2 − 2. Express (gof)−1 and f−1 og−1 as the sets of ordered pairs and verify that (gof)−1 = f−1 og−1.


If f : A → Ag : A → A are two bijections, then prove that fog is an injection ?


Which one of the following graphs represents a function?


Let C denote the set of all complex numbers. A function f : C → C is defined by f(x) = x3. Write f−1(1).


Let A = {x ∈ R : −4 ≤ x ≤ 4 and x ≠ 0} and f : A → R be defined by \[f\left( x \right) = \frac{\left| x \right|}{x}\]Write the range of f.


Let \[f : \left[ - \frac{\pi}{2}, \frac{\pi}{2} \right] \to\] A be defined by f(x) = sin x. If f is a bijection, write set A.


Write the domain of the real function

`f (x) = sqrt([x] - x) .`


What is the range of the function

`f (x) = ([x - 1])/(x -1) ?`


Let f : R → R be the function defined by f(x) = 4x − 3 for all x ∈ R Then write f .   [NCERT EXEMPLAR]


Let M be the set of all 2 × 2 matrices with entries from the set R of real numbers. Then, the function f : M→ R defined by f(A) = |A| for every A ∈ M, is

 


The  function f : [-1/2, 1/2, 1/2] → [-π /2,π/2], defined by f (x) = `sin^-1` (3x - `4x^3`), is

 


Which of the following functions from

\[A = \left\{ x \in R : - 1 \leq x \leq 1 \right\}\]

 


Let

\[f : [2, \infty ) \to X\] be defined by

\[f\left( x \right) = 4x - x^2\] Then, f is invertible if X =

 


Let \[f\left(x\right) = x^3\] be a function with domain {0, 1, 2, 3}. Then domain of \[f^{-1}\] is ______.


Let A = R − (2) and B = R − (1). If f: A ⟶ B is a function defined by`"f(x)"=("x"-1)/("x"-2),` how that f is one-one and onto. Hence, find f−1


Let f, g: R → R be two functions defined as f(x) = |x| + x and g(x) = x – x ∀ x ∈ R. Then, find f o g and g o f


Let A be a finite set. Then, each injective function from A into itself is not surjective.


For sets A, B and C, let f: A → B, g: B → C be functions such that g o f is surjective. Then g is surjective.


Let the function f: R → R be defined by f(x) = cosx, ∀ x ∈ R. Show that f is neither one-one nor onto


Let A = [–1, 1]. Then, discuss whether the following functions defined on A are one-one, onto or bijective:

f(x) = `x/2`


Let A = [–1, 1]. Then, discuss whether the following functions defined on A are one-one, onto or bijective:

g(x) = |x|


If f(x) = (4 – (x – 7)3}, then f–1(x) = ______.


Let X = {-1, 0, 1}, Y = {0, 2} and a function f : X → Y defiend by y = 2x4, is ____________.


If `f : R -> R^+  U {0}` be defined by `f(x) = x^2, x ∈ R`. The mapping is


A function f: x → y is said to be one – one (or injective) if:


Consider a function f: `[0, pi/2] ->` R, given by f(x) = sinx and `g[0, pi/2] ->` R given by g(x) = cosx then f and g are


Let f: R→R be a continuous function such that f(x) + f(x + 1) = 2, for all x ∈ R. If I1 = `int_0^8f(x)dx` and I2 = `int_(-1)^3f(x)dx`, then the value of I1 + 2I2 is equal to ______.


If A = {x ∈ R: |x – 2| > 1}, B = `{x ∈ R : sqrt(x^2 - 3) > 1}`, C = {x ∈ R : |x – 4| ≥ 2} and Z is the set of all integers, then the number of subsets of the set (A ∩ B ∩ C) C ∩ Z is ______.


Let f(x) be a polynomial of degree 3 such that f(k) = `-2/k` for k = 2, 3, 4, 5. Then the value of 52 – 10f(10) is equal to ______.


The trigonometric equation tan–1x = 3tan–1 a has solution for ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×