Advertisements
Advertisements
Question
Prove the following: `(tan(pi/4 + x))/(tan(pi/4 - x)) = ((1+ tan x)/(1- tan x))^2`
Solution
L.H.S = `(tan(pi/4 + x))/(tan(pi/4 - x))` now tan (A + B) = `(tan A + tanB)/(1 -tan A tan B)`
And tan (A - B) = `(tanA - tanB)/(1 + tan A tan B)`
`= ((tan pi/4 + tan x)/(1 - tan pi/4 tan x))/((tan pi/4 - tan x)/(1 + tan pi/4 tan x))`
= 1 + tan x
= `(1 - tan x)/(1 - tan x)`
= 1 + tan x
(∵ `tan pi/4 = 1` )
= `((1 + tan x) xx (1 + tan x) = (1 + tan x))^2/(1 - tan x xx 1 - tan x = ( 1- tan x)^2`
= `((1+ tan x)/(1 - tan x))^2` R.H.S
APPEARS IN
RELATED QUESTIONS
Prove that `cot^2 pi/6 + cosec (5pi)/6 + 3 tan^2 pi/6 = 6`
Prove that: `2 sin^2 (3pi)/4 + 2 cos^2 pi/4 + 2 sec^2 pi/3 = 10`
Prove the following:
sin (n + 1)x sin (n + 2)x + cos (n + 1)x cos (n + 2)x = cos x
Prove the following:
cos2 2x – cos2 6x = sin 4x sin 8x
Prove the following:
sin 2x + 2sin 4x + sin 6x = 4cos2 x sin 4x
Prove the following:
`(sin x + sin 3x)/(cos x + cos 3x) = tan 2x`
Prove the following:
cos 6x = 32 cos6 x – 48 cos4 x + 18 cos2 x – 1
If \[\cos A = - \frac{24}{25}\text{ and }\cos B = \frac{3}{5}\], where π < A < \[\frac{3\pi}{2}\text{ and }\frac{3\pi}{2}\]< B < 2π, find the following:
cos (A + B)
If \[\sin A = \frac{1}{2}, \cos B = \frac{12}{13}\], where \[\frac{\pi}{2}\]< A < π and \[\frac{3\pi}{2}\] < B < 2π, find tan (A − B).
If \[\sin A = \frac{1}{2}, \cos B = \frac{\sqrt{3}}{2}\], where \[\frac{\pi}{2}\] < A < π and 0 < B < \[\frac{\pi}{2}\], find the following:
tan (A + B)
Evaluate the following:
sin 36° cos 9° + cos 36° sin 9°
Prove that
Prove that:
\[\frac{\sin \left( A - B \right)}{\cos A \cos B} + \frac{\sin \left( B - C \right)}{\cos B \cos C} + \frac{\sin \left( C - A \right)}{\cos C \cos A} = 0\]
Prove that:
Prove that:
\[\frac{\tan \left( A + B \right)}{\cot \left( A - B \right)} = \frac{\tan^2 A - \tan^2 B}{1 - \tan^2 A \tan^2 B}\]
Prove that sin2 (n + 1) A − sin2 nA = sin (2n + 1) A sin A.
If sin α + sin β = a and cos α + cos β = b, show that
Prove that:
If angle \[\theta\] is divided into two parts such that the tangents of one part is \[\lambda\] times the tangent of other, and \[\phi\] is their difference, then show that\[\sin\theta = \frac{\lambda + 1}{\lambda - 1}\sin\phi\]
If \[\tan\theta = \frac{\sin\alpha - \cos\alpha}{\sin\alpha + \cos\alpha}\] , then show that \[\sin\alpha + \cos\alpha = \sqrt{2}\cos\theta\].
Find the maximum and minimum values of each of the following trigonometrical expression:
12 sin x − 5 cos x
Find the maximum and minimum values of each of the following trigonometrical expression:
\[5 \cos x + 3 \sin \left( \frac{\pi}{6} - x \right) + 4\]
Write the interval in which the value of 5 cos x + 3 cos \[\left( x + \frac{\pi}{3} \right) + 3\] lies.
If tan (A + B) = p and tan (A − B) = q, then write the value of tan 2B.
If sin α − sin β = a and cos α + cos β = b, then write the value of cos (α + β).
tan 20° + tan 40° + \[\sqrt{3}\] tan 20° tan 40° is equal to
If 3 sin x + 4 cos x = 5, then 4 sin x − 3 cos x =
If A + B + C = π, then \[\frac{\tan A + \tan B + \tan C}{\tan A \tan B \tan C}\] is equal to
If tan θ1 tan θ2 = k, then \[\frac{\cos \left( \theta_1 - \theta_2 \right)}{\cos \left( \theta_1 + \theta_2 \right)} =\]
If α and β are the solutions of the equation a tan θ + b sec θ = c, then show that tan (α + β) = `(2ac)/(a^2 - c^2)`.
Match each item given under column C1 to its correct answer given under column C2.
C1 | C2 |
(a) `(1 - cosx)/sinx` | (i) `cot^2 x/2` |
(b) `(1 + cosx)/(1 - cosx)` | (ii) `cot x/2` |
(c) `(1 + cosx)/sinx` | (iii) `|cos x + sin x|` |
(d) `sqrt(1 + sin 2x)` | (iv) `tan x/2` |
If f(x) = cos2x + sec2x, then ______.
[Hint: A.M ≥ G.M.]
The value of tan 75° - cot 75° is equal to ______.
The value of sin(45° + θ) - cos(45° - θ) is ______.
If sinx + cosx = a, then sin6x + cos6x = ______.
State whether the statement is True or False? Also give justification.
If tanA = `(1 - cos B)/sinB`, then tan2A = tanB
State whether the statement is True or False? Also give justification.
If cosecx = 1 + cotx then x = 2nπ, 2nπ + `pi/2`
State whether the statement is True or False? Also give justification.
If tanθ + tan2θ + `sqrt(3)` tanθ tan2θ = `sqrt(3)`, then θ = `("n"pi)/3 + pi/9`
In the following match each item given under the column C1 to its correct answer given under the column C2:
Column A | Column B |
(a) sin(x + y) sin(x – y) | (i) cos2x – sin2y |
(b) cos (x + y) cos (x – y) | (ii) `(1 - tan theta)/(1 + tan theta)` |
(c) `cot(pi/4 + theta)` | (iii) `(1 + tan theta)/(1 - tan theta)` |
(d) `tan(pi/4 + theta)` | (iv) sin2x – sin2y |