हिंदी

Define activation energy. - Chemistry

Advertisements
Advertisements

प्रश्न

Define activation energy.

Define the following term:

Activation energy

परिभाषा

उत्तर

Activation energy is the lowest energy necessary to commence a chemical reaction by disrupting the bonds of reactant molecules and creating the activated complex or transition state. It signifies the energy threshold that must be surmounted for a reaction to transpire. Activation energy is typically represented as Ea.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
2012-2013 (October)

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Explain a graphical method to determine activation energy of a reaction.


(b) Rate constant ‘k’ of a reaction varies with temperature ‘T’ according to the equation:

`logk=logA-E_a/2.303R(1/T)`

Where Ea is the activation energy. When a graph is plotted for `logk Vs. 1/T` a straight line with a slope of −4250 K is obtained. Calculate ‘Ea’ for the reaction.(R = 8.314 JK−1 mol−1)


 

Consider the reaction

`3I_((aq))^-) +S_2O_8^(2-)->I_(3(aq))^-) + 2S_2O_4^(2-)`

At particular time t, `(d[SO_4^(2-)])/dt=2.2xx10^(-2)"M/s"`

What are the values of the following at the same time?

a. `-(d[I^-])/dt`

b. `-(d[S_2O_8^(2-)])/dt`

c. `-(d[I_3^-])/dt`

 

 

The rate constant of a first order reaction increases from 2 × 10−2 to 4 × 10−2 when the temperature changes from 300 K to 310 K. Calculate the energy of activation (Ea).

(log 2 = 0.301, log 3 = 0.4771, log 4 = 0.6021)


The rate constant for the decomposition of hydrocarbons is 2.418 × 10−5 s−1 at 546 K. If the energy of activation is 179.9 kJ/mol, what will be the value of pre-exponential factor?


Consider a certain reaction \[\ce{A -> Products}\] with k = 2.0 × 10−2 s−1. Calculate the concentration of A remaining after 100 s if the initial concentration of A is 1.0 mol L−1.


The decomposition of hydrocarbon follows the equation k = `(4.5 xx 10^11  "s"^-1) "e"^(-28000 "K"//"T")`

Calculate Ea.


The decomposition of A into product has value of k as 4.5 × 103 s−1 at 10°C and energy of activation 60 kJ mol−1. At what temperature would k be 1.5 × 104 s−1?


In the Arrhenius equation for a first order reaction, the values of ‘A’ of ‘Ea’ are 4 x 1013 sec-1 and 98.6 kJ mol-1 respectively. At what temperature will its half life period be 10 minutes? 
[R = 8.314 J K-1 mol-1]


The rate constant of a first order reaction are 0.58 S-1 at 313 K and 0.045 S-1 at 293 K. What is the energy of activation for the reaction?


What is the effect of adding a catalyst on Activation energy (Ea)


A first-order reaction is 50% completed in 40 minutes at 300 K and in 20 minutes at 320 K. Calculate the activation energy of the reaction. (Given : log 2 = 0·3010, log 4 = 0·6021, R = 8·314 JK–1 mol–1)


Explain the following terms :

Half life period of a reaction (t1/2)

 

 

 Write a condition under which a bimolecular reaction is kinetically first order. Give an example of  such a reaction. (Given : log2 = 0.3010,log 3 = 0.4771, log5 = 0.6990).


Activation energy of a chemical reaction can be determined by ______.


Consider figure and mark the correct option.


The reaction between \[\ce{H2(g)}\] and \[\ce{O2(g)}\] is highly feasible yet allowing the gases to stand at room temperature in the same vessel does not lead to the formation of water. Explain.


Why does the rate of a reaction increase with rise in temperature?


Oxygen is available in plenty in air yet fuels do not burn by themselves at room temperature. Explain.


Thermodynamic feasibility of the reaction alone cannot decide the rate of the reaction. Explain with the help of one example.


Why in the redox titration of \[\ce{KMnO4}\] vs oxalic acid, we heat oxalic acid solution before starting the titration?


Match the statements given in Column I and Column II

  Column I Column I
(i) Catalyst alters the rate of reaction (a) cannot be fraction or zero
(ii) Molecularity (b) proper orientation is not there always
(iii) Second half life of first order reaction (c) by lowering the activation energy
(iv) `e^((-E_a)/(RT)` (d) is same as the first
(v) Energetically favourable reactions (e) total probability is one are sometimes slow (e) total probability is one
(vi) Area under the Maxwell Boltzman curve is constant (f) refers to the fraction of molecules with energy equal to or greater than activation energy

For an endothermic reaction energy of activation is Ea and enthalpy of reaction ΔH (both of there in KJ moI–1) minimum value of Ea will be


In respect of the eqn k = \[\ce{Ae^{{-E_a}/{RT}}}\] in chemical kinetics, which one of the following statement is correct?


The rate constant for a reaction is 1.5 × 10–7 sec–1 at 50°C. What is the value of activation energy?


The activation energy in a chemical reaction is defined as ______.


Arrhenius equation can be represented graphically as follows:

The (i) intercept and (ii) slope of the graph are:


The activation energy of one of the reactions in a biochemical process is 532611 J mol–1. When the temperature falls from 310 K to 300 K, the change in rate constant observed is k300 = x × 10–3 k310. The value of x is ______.

[Given: ln 10 = 2.3, R = 8.3 J K–1 mol–1]


The equation k = `(6.5 xx 10^12 "s"^(-1))"e"^(- 26000 " K"//"T")` is followed for the decomposition of compound A. The activation energy for the reaction is ______ kJ mol-1. (Nearest integer) (Given: R = 8.314 JK-1 mol-1)


The decomposition of N2O into N2 and O2 in the presence of gaseous argon follows second-order kinetics, with k = (5.0 × 1011 L mol−1 s−1) `"e"^(-(29000  "K")/"T")`. Arrhenius parameters are ______ kJ mol−1.


An exothermic reaction X → Y has an activation energy 30 kJ mol-1. If energy change ΔE during the reaction is - 20 kJ, then the activation energy for the reverse reaction in kJ is ______.


A schematic plot of ln Keq versus inverse of temperature for a reaction is shown below

The reaction must be:


What happens to the rate constant k and activation energy Ea as the temperature of a chemical reaction is increased? Justify.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×