English

The integrating factor of the differential equation. (1-y2)dxdy+yx=ay(-1<<1) is ______. - Mathematics

Advertisements
Advertisements

Question

The integrating factor of the differential equation.

`(1 - y^2) dx/dy + yx = ay(-1 < y < 1)` is ______.

Options

  • `1/(y^2 - 1)`

  • `1/sqrt(y^2 - 1)`

  • `1/(1 - y^2)`

  • `1/sqrt(1 - y^2)`

MCQ
Fill in the Blanks

Solution

The integrating factor of the differential equation.

`(1 - y^2) dx/dy + yx = ay(-1 < y < 1)` is `underline(1/sqrt(1 - y^2)).`

Explanation:

The differential equation is,

`(1 – y^2)dy/dx + yx = ay`

or  `dx/dy + y/(1 - y^2) x = y/(1 - y^2)`

Comparing with `dx/dy + Px = Q`,

`P = y/(1 - y^2), Q = y/(1 - y^2)`

`int P dx = int y/(1 - y^2)  dy`

`= e^(- 1/2 int (- 2y)/(1 - y^2) dy)`

Let `= - 1/2 int (- 2y)/(1 - y^2)  dy`

`1 - y^2` = t

∴ - 2y dy = dt

`= - 1/2 int dt/t = - 1/2 log t`

`= - 1/2 log (1 - y^2)`

`= log  1/sqrt(1 - y^2)`

`I.F. = e^(int P dx) = e^(log 1 sqrt(1 - y^2))`

`= 1/sqrt(1 - y^2)`

shaalaa.com
  Is there an error in this question or solution?
Chapter 9: Differential Equations - Exercise 9.6 [Page 414]

APPEARS IN

NCERT Mathematics [English] Class 12
Chapter 9 Differential Equations
Exercise 9.6 | Q 19 | Page 414

RELATED QUESTIONS

For the differential equation, find the general solution:

`dy/dx + 3y = e^(-2x)`


For the differential equation, find the general solution:

`x dy/dx +  2y= x^2 log x`


For the differential equation, find the general solution:

`x dy/dx + y - x + xy cot x = 0(x != 0)`


Find the equation of the curve passing through the origin given that the slope of the tangent to the curve at any point (x, y) is equal to the sum of the coordinates of the point.


Find the equation of a curve passing through the point (0, 2) given that the sum of the coordinates of any point on the curve exceeds the magnitude of the slope of the tangent to the curve at that point by 5.


Solve the differential equation `(tan^(-1) x- y) dx = (1 + x^2) dy`


Find the general solution of the differential equation `dy/dx - y = sin x`


\[\left( 1 + x^2 \right)\frac{dy}{dx} + y = e^{tan^{- 1} x}\]

x dy = (2y + 2x4 + x2) dx


dx + xdy = e−y sec2 y dy


\[\frac{dy}{dx}\] + y cos x = sin x cos x


\[\frac{dy}{dx} - y = x e^x\]

Find the general solution of the differential equation \[\frac{dy}{dx} - y = \cos x\]


Find the particular solution of the differential equation \[\frac{dx}{dy} + x \cot y = 2y + y^2 \cot y, y ≠ 0\] given that x = 0 when \[y = \frac{\pi}{2}\].


Solve the following differential equation:- \[\left( \cot^{- 1} y + x \right) dy = \left( 1 + y^2 \right) dx\]


Solve the following differential equation: \[\left( \cot^{- 1} y + x \right) dy = \left( 1 + y^2 \right) dx\] .


Solve the differential equation \[\frac{dy}{dx}\] + y cot x = 2 cos x, given that y = 0 when x = \[\frac{\pi}{2}\] .


Find the integerating factor of the differential equation `xdy/dx - 2y = 2x^2` . 


Solve the differential equation: (1 +x) dy + 2xy dx = cot x dx 


Solve the differential equation: `(1 + x^2) dy/dx + 2xy - 4x^2 = 0,` subject to the initial condition y(0) = 0.


Solve the following differential equation:

`"dy"/"dx" + "y" * sec "x" = tan "x"`


Solve the following differential equation dr + (2r cot θ + sin 2θ) dθ = 0.


Solve the following differential equation:

`(1 + "x"^2) "dy"/"dx" + "y" = "e"^(tan^-1 "x")`


Find the equation of the curve which passes through the origin and has the slope x + 3y - 1 at any point (x, y) on it.


Find the equation of the curve passing through the point `(3/sqrt2, sqrt2)` having a slope of the tangent to the curve at any point (x, y) is -`"4x"/"9y"`.


The curve passes through the point (0, 2). The sum of the coordinates of any point on the curve exceeds the slope of the tangent to the curve at any point by 5. Find the equation of the curve.


The integrating factor of the differential equation (1 + x2)dt = (tan-1 x - t)dx is ______.


Integrating factor of `dy/dx + y = x^2 + 5` is ______ 


The integrating factor of differential equation `(1 - y)^2  (dx)/(dy) + yx = ay(-1 < y < 1)`


State whether the following statement is true or false.

The integrating factor of the differential equation `(dy)/(dx) + y/x` = x3 is – x.


If y = y(x) is the solution of the differential equation, `(dy)/(dx) + 2ytanx = sinx, y(π/3)` = 0, then the maximum value of the function y (x) over R is equal to ______.


Let y = y(x) be a solution curve of the differential equation (y + 1)tan2xdx + tanxdy + ydx = 0, `x∈(0, π/2)`. If `lim_(x→0^+)` xy(x) = 1, then the value of `y(π/2)` is ______.


If the slope of the tangent at (x, y) to a curve passing through `(1, π/4)` is given by `y/x - cos^2(y/x)`, then the equation of the curve is ______.


Solve:

`xsinx dy/dx + (xcosx + sinx)y` = sin x


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×