Advertisements
Advertisements
Question
The integrating factor of the differential equation.
`(1 - y^2) dx/dy + yx = ay(-1 < y < 1)` is ______.
Options
`1/(y^2 - 1)`
`1/sqrt(y^2 - 1)`
`1/(1 - y^2)`
`1/sqrt(1 - y^2)`
Solution
The integrating factor of the differential equation.
`(1 - y^2) dx/dy + yx = ay(-1 < y < 1)` is `underline(1/sqrt(1 - y^2)).`
Explanation:
The differential equation is,
`(1 – y^2)dy/dx + yx = ay`
or `dx/dy + y/(1 - y^2) x = y/(1 - y^2)`
Comparing with `dx/dy + Px = Q`,
`P = y/(1 - y^2), Q = y/(1 - y^2)`
`int P dx = int y/(1 - y^2) dy`
`= e^(- 1/2 int (- 2y)/(1 - y^2) dy)`
Let `= - 1/2 int (- 2y)/(1 - y^2) dy`
`1 - y^2` = t
∴ - 2y dy = dt
`= - 1/2 int dt/t = - 1/2 log t`
`= - 1/2 log (1 - y^2)`
`= log 1/sqrt(1 - y^2)`
`I.F. = e^(int P dx) = e^(log 1 sqrt(1 - y^2))`
`= 1/sqrt(1 - y^2)`
APPEARS IN
RELATED QUESTIONS
For the differential equation, find the general solution:
`dy/dx + 3y = e^(-2x)`
For the differential equation, find the general solution:
`x dy/dx + 2y= x^2 log x`
For the differential equation, find the general solution:
`x dy/dx + y - x + xy cot x = 0(x != 0)`
Find the equation of the curve passing through the origin given that the slope of the tangent to the curve at any point (x, y) is equal to the sum of the coordinates of the point.
Find the equation of a curve passing through the point (0, 2) given that the sum of the coordinates of any point on the curve exceeds the magnitude of the slope of the tangent to the curve at that point by 5.
Solve the differential equation `(tan^(-1) x- y) dx = (1 + x^2) dy`
Find the general solution of the differential equation `dy/dx - y = sin x`
x dy = (2y + 2x4 + x2) dx
dx + xdy = e−y sec2 y dy
\[\frac{dy}{dx}\] + y cos x = sin x cos x
Find the general solution of the differential equation \[\frac{dy}{dx} - y = \cos x\]
Find the particular solution of the differential equation \[\frac{dx}{dy} + x \cot y = 2y + y^2 \cot y, y ≠ 0\] given that x = 0 when \[y = \frac{\pi}{2}\].
Solve the following differential equation:- \[\left( \cot^{- 1} y + x \right) dy = \left( 1 + y^2 \right) dx\]
Solve the following differential equation: \[\left( \cot^{- 1} y + x \right) dy = \left( 1 + y^2 \right) dx\] .
Solve the differential equation \[\frac{dy}{dx}\] + y cot x = 2 cos x, given that y = 0 when x = \[\frac{\pi}{2}\] .
Find the integerating factor of the differential equation `xdy/dx - 2y = 2x^2` .
Solve the differential equation: (1 +x2 ) dy + 2xy dx = cot x dx
Solve the differential equation: `(1 + x^2) dy/dx + 2xy - 4x^2 = 0,` subject to the initial condition y(0) = 0.
Solve the following differential equation:
`"dy"/"dx" + "y" * sec "x" = tan "x"`
Solve the following differential equation dr + (2r cot θ + sin 2θ) dθ = 0.
Solve the following differential equation:
`(1 + "x"^2) "dy"/"dx" + "y" = "e"^(tan^-1 "x")`
Find the equation of the curve which passes through the origin and has the slope x + 3y - 1 at any point (x, y) on it.
Find the equation of the curve passing through the point `(3/sqrt2, sqrt2)` having a slope of the tangent to the curve at any point (x, y) is -`"4x"/"9y"`.
The curve passes through the point (0, 2). The sum of the coordinates of any point on the curve exceeds the slope of the tangent to the curve at any point by 5. Find the equation of the curve.
The integrating factor of the differential equation (1 + x2)dt = (tan-1 x - t)dx is ______.
Integrating factor of `dy/dx + y = x^2 + 5` is ______
The integrating factor of differential equation `(1 - y)^2 (dx)/(dy) + yx = ay(-1 < y < 1)`
State whether the following statement is true or false.
The integrating factor of the differential equation `(dy)/(dx) + y/x` = x3 is – x.
If y = y(x) is the solution of the differential equation, `(dy)/(dx) + 2ytanx = sinx, y(π/3)` = 0, then the maximum value of the function y (x) over R is equal to ______.
Let y = y(x) be a solution curve of the differential equation (y + 1)tan2xdx + tanxdy + ydx = 0, `x∈(0, π/2)`. If `lim_(x→0^+)` xy(x) = 1, then the value of `y(π/2)` is ______.
If the slope of the tangent at (x, y) to a curve passing through `(1, π/4)` is given by `y/x - cos^2(y/x)`, then the equation of the curve is ______.
Solve:
`xsinx dy/dx + (xcosx + sinx)y` = sin x