Advertisements
Advertisements
Question
Find the derivative of `2/(x + 1) - x^2/(3x -1)`.
Solution
Let f(x) = `2/(x + 1) - x^2/(3x - 1)`
`f'(x) = d/dx (2/(x + 1)) - d/dx(x^2/(3x - 1))`
= `(|d/dx(2)|(x + 1) - 2d/dx (x + 1))/(x + 1)^2 - (|d/dx(x^2)|(3x - 1) - x^2d/dx (3x - 1))/(3x - 1)^2`
= `(0 - 2 xx 1)/(x + 1)^2 - (2x(3x - 1) - x^2 xx 3)/(3x - 1)^2`
= `(-2)/(x + 1)^2 - (6x^2 - 2x - 3x^2)/(3x - 1)^2`
= `(-2)/(x + 1)^2 - (3x^2 - 2x)/(3x - 1)^2`
= `(-2)/(x + 1)^2 - (x(3x - 2))/(3x - 1)^2`
APPEARS IN
RELATED QUESTIONS
For the function
f(x) = `x^100/100 + x^99/99 + ...+ x^2/2 + x + 1`
Prove that f'(1) = 100 f'(0)
Find the derivative of x5 (3 – 6x–9).
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`1/(ax^2 + bx + c)`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
sin (x + a)
Find the derivative of f (x) = 3x at x = 2
Find the derivative of f (x) x at x = 1
\[\frac{x + 1}{x + 2}\]
\[\frac{1}{\sqrt{3 - x}}\]
\[\sqrt{2 x^2 + 1}\]
\[\frac{2x + 3}{x - 2}\]
Differentiate of the following from first principle:
eax + b
Differentiate each of the following from first principle:
x2 ex
Differentiate each of the following from first principle:
\[e^\sqrt{2x}\]
\[\cos \sqrt{x}\]
\[\frac{x^3}{3} - 2\sqrt{x} + \frac{5}{x^2}\]
\[\frac{a \cos x + b \sin x + c}{\sin x}\]
\[\text{ If } y = \left( \frac{2 - 3 \cos x}{\sin x} \right), \text{ find } \frac{dy}{dx} at x = \frac{\pi}{4}\]
\[\text{ If } y = \frac{2 x^9}{3} - \frac{5}{7} x^7 + 6 x^3 - x, \text{ find } \frac{dy}{dx} at x = 1 .\]
xn tan x
(x3 + x2 + 1) sin x
x2 sin x log x
(1 +x2) cos x
\[\frac{x^2 \cos\frac{\pi}{4}}{\sin x}\]
x5 (3 − 6x−9)
x−4 (3 − 4x−5)
\[\frac{x^2 + 1}{x + 1}\]
\[\frac{2x - 1}{x^2 + 1}\]
\[\frac{a x^2 + bx + c}{p x^2 + qx + r}\]
\[\frac{x}{1 + \tan x}\]
\[\frac{x \sin x}{1 + \cos x}\]
\[\frac{\sqrt{a} + \sqrt{x}}{\sqrt{a} - \sqrt{x}}\]
\[\frac{1 + 3^x}{1 - 3^x}\]
If x < 2, then write the value of \[\frac{d}{dx}(\sqrt{x^2 - 4x + 4)}\]
Find the derivative of x2 cosx.