English

Find the derivative of 2x+1-x23x-1. - Mathematics

Advertisements
Advertisements

Question

Find the derivative of `2/(x + 1) - x^2/(3x -1)`.

Sum

Solution

Let f(x) = `2/(x + 1) - x^2/(3x - 1)`

`f'(x) = d/dx (2/(x + 1)) - d/dx(x^2/(3x - 1))`

= `(|d/dx(2)|(x + 1) - 2d/dx (x + 1))/(x + 1)^2 - (|d/dx(x^2)|(3x - 1) - x^2d/dx (3x - 1))/(3x - 1)^2`

= `(0 - 2 xx 1)/(x + 1)^2 - (2x(3x - 1) - x^2 xx 3)/(3x - 1)^2`

= `(-2)/(x + 1)^2 - (6x^2 - 2x - 3x^2)/(3x - 1)^2`

= `(-2)/(x + 1)^2 - (3x^2 - 2x)/(3x - 1)^2`

= `(-2)/(x + 1)^2 - (x(3x - 2))/(3x - 1)^2`

shaalaa.com
  Is there an error in this question or solution?
Chapter 13: Limits and Derivatives - Exercise 13.2 [Page 313]

APPEARS IN

NCERT Mathematics [English] Class 11
Chapter 13 Limits and Derivatives
Exercise 13.2 | Q 9.6 | Page 313

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

For the function

f(x) = `x^100/100 + x^99/99 + ...+ x^2/2 + x + 1`

Prove that f'(1) = 100 f'(0)


Find the derivative of x5 (3 – 6x–9).


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`1/(ax^2 + bx + c)`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

sin (x + a)


Find the derivative of f (x) = 3x at x = 2 


Find the derivative of f (xx at x = 1

 


\[\frac{x + 1}{x + 2}\]


\[\frac{1}{\sqrt{3 - x}}\]


\[\sqrt{2 x^2 + 1}\]


\[\frac{2x + 3}{x - 2}\] 


Differentiate  of the following from first principle:

 eax + b


Differentiate each of the following from first principle:

x2 e


Differentiate each  of the following from first principle:

\[e^\sqrt{2x}\]


\[\cos \sqrt{x}\]


\[\frac{x^3}{3} - 2\sqrt{x} + \frac{5}{x^2}\]


\[\frac{a \cos x + b \sin x + c}{\sin x}\]


\[\text{ If } y = \left( \frac{2 - 3 \cos x}{\sin x} \right), \text{ find } \frac{dy}{dx} at x = \frac{\pi}{4}\]


\[\text{ If } y = \frac{2 x^9}{3} - \frac{5}{7} x^7 + 6 x^3 - x, \text{ find } \frac{dy}{dx} at x = 1 .\] 


xn tan 


(x3 + x2 + 1) sin 


x2 sin x log 


(1 +x2) cos x


\[\frac{x^2 \cos\frac{\pi}{4}}{\sin x}\] 


x5 (3 − 6x−9


x4 (3 − 4x−5)


\[\frac{x^2 + 1}{x + 1}\] 


\[\frac{2x - 1}{x^2 + 1}\] 


\[\frac{a x^2 + bx + c}{p x^2 + qx + r}\] 


\[\frac{x}{1 + \tan x}\] 


\[\frac{x \sin x}{1 + \cos x}\]


\[\frac{\sqrt{a} + \sqrt{x}}{\sqrt{a} - \sqrt{x}}\] 


\[\frac{1 + 3^x}{1 - 3^x}\]


If x < 2, then write the value of \[\frac{d}{dx}(\sqrt{x^2 - 4x + 4)}\] 


Find the derivative of x2 cosx.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×