Advertisements
Advertisements
Question
If `x = sqrt(a^(sin^(-1)))`, y = `sqrt(a^(cos^(-1)))` show that `dy/dx = - y/x`
Solution 1
The given equations are `x = sqrt(a^(sin^(-1)))`, y = `sqrt(a^(cos^(-1)t))`
Solution 2
Given: `x = sqrt(a^(sin^(-1)t))` and `y = sqrt (a^(cos^(-1)t))`
`dx/dt = 1/2 . 1/(a^(sin^(-1)t)). d/dt a ^(sin^(-1)t)`
`= 1/2 . 1/ sqrt (a^(sin^(-1)t)). a^(sin^(-1)t) . log a d/dt sin^-1 t`
`= sqrt((a^(sin^(-1)))t)/2. log a . 1/ (sqrt(1-t^2)`
`dy/dt = 1/2. 1/ sqrt (a^(cos^(-1))t). d/dt a^(cos^(-1)t)`
`= 1/2 . 1/sqrt (a^(cos^(-1))t). a^( cos^(-1)) . log a. -1/(sqrt (1 - t^2))`
`= sqrt (a^(cos^(-1))t)/2 .log a -1/sqrt(1 - t^2)`
`∴ dy/dx = (dy/dt)/(dx/dt) = (sqrt (a^(cos^(-1))t)/2. log a. -1/ sqrt(1 - t^2))/( sqrt (a^(sin^(-1))t)/2 . log a . 1/ sqrt (1 - t^2))`
`= (-sqrt( a^(cos^(-1)))t)/ sqrt (a^(sin^(-1))t) = (-y)/x.`
APPEARS IN
RELATED QUESTIONS
If `log_10((x^3-y^3)/(x^3+y^3))=2 "then show that" dy/dx = [-99x^2]/[101y^2]`
find dy/dx if x=e2t , y=`e^sqrtt`
If x=at2, y= 2at , then find dy/dx.
If `x=a(t-1/t),y=a(t+1/t)`, then show that `dy/dx=x/y`
If y =1 - cos θ , x = 1 - sin θ , then ` dy/dx at " "θ =pi/4` is ________
If x=a sin 2t(1+cos 2t) and y=b cos 2t(1−cos 2t), find `dy/dx `
If x=α sin 2t (1 + cos 2t) and y=β cos 2t (1−cos 2t), show that `dy/dx=β/αtan t`
If x = a sin 2t (1 + cos2t) and y = b cos 2t (1 – cos 2t), find the values of `dy/dx `at t = `pi/4`
If x = a sin 2t (1 + cos 2t) and y = b cos 2t (1 – cos 2t) then find `dy/dx `
If x = cos t (3 – 2 cos2 t) and y = sin t (3 – 2 sin2 t), find the value of dx/dy at t =4/π.
Derivatives of tan3θ with respect to sec3θ at θ=π/3 is
(A)` 3/2`
(B) `sqrt3/2`
(C) `1/2`
(D) `-sqrt3/2`
If x and y are connected parametrically by the equation, without eliminating the parameter, find `dy/dx`
`x = 2at^2, y = at^4`
If x and y are connected parametrically by the equation, without eliminating the parameter, find `dy/dx.`
x = a cos θ, y = b cos θ
If x and y are connected parametrically by the equation, without eliminating the parameter, find `dy/dx.`
`x = 4t, y = 4/y`
If x and y are connected parametrically by the equation without eliminating the parameter, find `dy/dx`.
x = cos θ – cos 2θ, y = sin θ – sin 2θ
If x and y are connected parametrically by the equation, without eliminating the parameter, find `dy/dx.`
x = a sec θ, y = b tan θ
If x = a (2θ – sin 2θ) and y = a (1 – cos 2θ), find `dy/dx` when `theta = pi/3`
IF `y = e^(sin-1x) and z =e^(-cos-1x),` prove that `dy/dz = e^x//2`
The cost C of producing x articles is given as C = x3-16x2 + 47x. For what values of x, with the average cost is decreasing'?
Evaluate : `int (sec^2 x)/(tan^2 x + 4)` dx
x = 3cosθ – 2cos3θ, y = 3sinθ – 2sin3θ
sin x = `(2"t")/(1 + "t"^2)`, tan y = `(2"t")/(1 - "t"^2)`
x = `(1 + log "t")/"t"^2`, y = `(3 + 2 log "t")/"t"`
If x = ecos2t and y = esin2t, prove that `"dy"/"dx" = (-y log x)/(xlogy)`
If x = asin2t (1 + cos2t) and y = b cos2t (1–cos2t), show that `("dy"/"dx")_("at t" = pi/4) = "b"/"a"`
If x = 3sint – sin 3t, y = 3cost – cos 3t, find `"dy"/"dx"` at t = `pi/3`
Differentiate `tan^-1 ((sqrt(1 + x^2) - 1)/x)` w.r.t. tan–1x, when x ≠ 0
If `"x = a sin" theta "and y = b cos" theta, "then" ("d"^2 "y")/"dx"^2` is equal to ____________.
If x = `a[cosθ + logtan θ/2]`, y = asinθ then `(dy)/(dx)` = ______.
Let a function y = f(x) is defined by x = eθsinθ and y = θesinθ, where θ is a real parameter, then value of `lim_(θ→0)`f'(x) is ______.