Advertisements
Advertisements
Question
Find the approximate value of log10 (1016), given that log10e = 0⋅4343.
Solution
Let f(x) = log10x = `(log_ex)/(log_e10)`
= (log10e)(logex)
= (0.4343) log x
∴ f'(x) = `0.4343/x`
x = 1016 = 1000 + 16 = a + h
Here, a = 1000 and h = 16
f(a) = f(1000)
= log10(1000)
= log10(10)3
= 3log10 10 ...[∵ log10 mn = n log10 m]
= 3
f'(a) = f'(1000) = `0.4343/1000` = 0.0004343
f(a + h) ≈ f(a) + hf'(a)
log10(1016) ≈ 3 + 16(0.0004343)
≈ 3 + 0.0069488
log10(1016) ≈ 3.006949
APPEARS IN
RELATED QUESTIONS
Find the approximate value of ` sqrt8.95 `
Using differentials, find the approximate value of the following up to 3 places of decimal
`sqrt(25.3)`
Using differentials, find the approximate value of the following up to 3 places of decimal
`sqrt(49.5)`
Using differentials, find the approximate value of the following up to 3 places of decimal
`sqrt(0.6)`
Using differentials, find the approximate value of the following up to 3 places of decimal
`(0.999)^(1/10)`
Using differentials, find the approximate value of the following up to 3 places of decimal
`(15)^(1/4)`
Using differentials, find the approximate value of the following up to 3 places of decimal
`(82)^(1/4)`
Using differentials, find the approximate value of the following up to 3 places of decimal
`(3.968)^(3/2)`
Find the approximate value of f (5.001), where f (x) = x3 − 7x2 + 15.
Find the approximate change in the volume V of a cube of side x metres caused by increasing side by 1%.
If the radius of a sphere is measured as 7 m with an error of 0.02m, then find the approximate error in calculating its volume.
If the radius of a sphere is measured as 9 m with an error of 0.03 m, then find the approximate error in calculating in surface area
If f (x) = 3x2 + 15x + 5, then the approximate value of f (3.02) is
A. 47.66
B. 57.66
C. 67.66
D. 77.66
Show that the function given by `f(x) = (log x)/x` has maximum at x = e.
The normal to the curve x2 = 4y passing (1, 2) is
(A) x + y = 3
(B) x − y = 3
(C) x + y = 1
(D) x − y = 1
If y = sin x and x changes from π/2 to 22/14, what is the approximate change in y ?
A circular metal plate expends under heating so that its radius increases by k%. Find the approximate increase in the area of the plate, if the radius of the plate before heating is 10 cm.
Using differential, find the approximate value of the \[\sqrt{401}\] ?
Using differential, find the approximate value of the \[\left( 15 \right)^\frac{1}{4}\] ?
Using differential, find the approximate value of the loge 4.04, it being given that log104 = 0.6021 and log10e = 0.4343 ?
Using differential, find the approximate value of the loge 10.02, it being given that loge10 = 2.3026 ?
Using differential, find the approximate value of the \[\cos\left( \frac{11\pi}{36} \right)\] ?
Using differential, find the approximate value of the \[\left( 80 \right)^\frac{1}{4}\] ?
Using differential, find the approximate value of the \[\left( 66 \right)^\frac{1}{3}\] ?
Using differential, find the approximate value of the \[\sqrt{0 . 48}\] ?
Using differential, find the approximate value of the \[\sqrt{49 . 5}\] ?
Using differential, find the approximate value of the \[\left( 3 . 968 \right)^\frac{3}{2}\] ?
Using differential, find the approximate value of the \[\left( 1 . 999 \right)^5\] ?
Using differential, find the approximate value of the \[\sqrt{0 . 082}\] ?
Find the approximate value of f (5.001), where f (x) = x3 − 7x2 + 15 ?
Find the approximate value of log10 1005, given that log10 e = 0.4343 ?
If the radius of a sphere is measured as 9 cm with an error of 0.03 m, find the approximate error in calculating its surface area ?
Find the approximate change in the surface area of a cube of side x metres caused by decreasing the side by 1% ?
Find the approximate change in the value V of a cube of side x metres caused by increasing the side by 1% ?
For the function y = x2, if x = 10 and ∆x = 0.1. Find ∆ y ?
If the percentage error in the radius of a sphere is α, find the percentage error in its volume ?
A piece of ice is in the form of a cube melts so that the percentage error in the edge of cube is a, then find the percentage error in its volume ?
If there is an error of 2% in measuring the length of a simple pendulum, then percentage error in its period is
If there is an error of a% in measuring the edge of a cube, then percentage error in its surface is
The height of a cylinder is equal to the radius. If an error of α % is made in the height, then percentage error in its volume is
The pressure P and volume V of a gas are connected by the relation PV1/4 = constant. The percentage increase in the pressure corresponding to a deminition of 1/2 % in the volume is
If y = xn then the ratio of relative errors in y and x is
Find the approximate values of : `sqrt(8.95)`
Find the approximate values of (4.01)3
Find the approximate values of : cos(60° 30°), given that 1° = 0.0175°, `sqrt(3) = 1.732`
Find the approximate values of : tan (45° 40'), given that 1° = 0.0175°.
Find the approximate values of : tan–1 (1.001)
Find the approximate values of : 32.01, given that log 3 = 1.0986
Find the approximate values of : f(x) = x3 – 3x + 5 at x = 1.99.
Find the approximate values of : f(x) = x3 + 5x2 – 7x + 10 at x = 1.12.
The approximate value of the function f(x) = x3 − 3x + 5 at x = 1.99 is ____________.
Using differentiation, approximate value of f(x) = x2 - 2x + 1 at x = 2.99 is ______.
Using differentials, find the approximate value of `sqrt(0.082)`
Find the approximate value of (1.999)5.
If the radius of a sphere is measured as 9 cm with an error of 0.03 cm, then find the approximating error in calculating its volume.
If the radius of a sphere is measured as 9 m with an error of 0.03 m. the find the approximate error in calculating its surface area
If `(x) = 3x^2 + 15x + 5`, then the approximate value of `f(3.02)` is
The approximate change in volume of a cube of side `x` meters coverd by increasing the side by 3% is
The approximate value of f(x) = x3 + 5x2 – 7x + 9 at x = 1.1 is ______.
Find the approximate value of sin (30° 30′). Give that 1° = 0.0175c and cos 30° = 0.866
Find the approximate value of tan−1 (1.002).
[Given: π = 3.1416]