Advertisements
Advertisements
Question
Evaluate the definite integrals `int_0^pi (x tan x)/(sec x + tan x)dx`
Solution
Let I = `int_0^π (xtanx)/(secx + tanx)dx` ...(1)
I = `int_0^π {((π - x)tan(π - x))/(sec(π - x) + tan(π - x))}dx` ...`(int_0^a f(x)dx = int_0^a f(a - x)dx)`
`\implies` I = `int_0^π {(-(π - x)tanx)/(-(secx + tanx))}dx`
`\implies` I = `int_0^π ((π - x)tanx)/(secx + tanx)dx` ...(2)
Adding (1) and (2), we obtain
2I = `int_0^π (πtanx)/(secx + tanx)dx`
`implies` 2I = `πint_0^π (sinx/cosx)/(1/cosx + sinx/cosx)dx`
`implies` 2I = `πint_0^π (sinx + 1 - 1)/(1 + sinx)dx`
`implies` 2I = `πint_0^π 1.dx - πint_0^π 1/(1 + sinx)dx`
`implies` 2I = `π[x]_0^π - πint_0^π (1 - sinx)/(cos^2x)dx`
`implies` 2I = `π^2 - πint_0^π (sec^2x - tanx secx)dx`
`implies` 2I = `π^2 - π[tanx - secx]_0^π`
`implies` 2I = π[tan π – sec π – tan 0 + sec 0]
`implies` 2I = π2 – π[0 – (–1) – 0 + 1]
`implies` 2I = π2 – 2π
`implies` 2I = π(π – 2)
`implies` I = `π/2(π - 2)`
APPEARS IN
RELATED QUESTIONS
By using the properties of the definite integral, evaluate the integral:
`int_0^(pi/2) (sin x - cos x)/(1+sinx cos x) dx`
By using the properties of the definite integral, evaluate the integral:
`int_0^pi log(1+ cos x) dx`
By using the properties of the definite integral, evaluate the integral:
`int_0^a sqrtx/(sqrtx + sqrt(a-x)) dx`
\[\int\limits_0^k \frac{1}{2 + 8 x^2} dx = \frac{\pi}{16},\] find the value of k.
If \[f\left( a + b - x \right) = f\left( x \right)\] , then prove that
Evaluate : \[\int(3x - 2) \sqrt{x^2 + x + 1}dx\] .
Evaluate : `int 1/("x" [("log x")^2 + 4]) "dx"`
The total revenue R = 720 - 3x2 where x is number of items sold. Find x for which total revenue R is increasing.
Evaluate the following integral:
`int_0^1 x(1 - x)^5 *dx`
`int_"a"^"b" "f"(x) "d"x` = ______
`int_2^4 x/(x^2 + 1) "d"x` = ______
Evaluate `int_1^2 (sqrt(x))/(sqrt(3 - x) + sqrt(x)) "d"x`
`int_0^(pi/4) (sec^2 x)/((1 + tan x)(2 + tan x))`dx = ?
The c.d.f, F(x) associated with p.d.f. f(x) = 3(1- 2x2). If 0 < x < 1 is k`(x - (2x^3)/"k")`, then value of k is ______.
`int_0^1 (1 - x)^5`dx = ______.
`int_0^{pi/2} cos^2x dx` = ______
If f(x) = |x - 2|, then `int_-2^3 f(x) dx` is ______
`int_(pi/4)^(pi/2) sqrt(1-sin 2x) dx =` ______.
`int_0^1 "e"^(5logx) "d"x` = ______.
Find `int_0^(pi/4) sqrt(1 + sin 2x) "d"x`
`int_(-"a")^"a" "f"(x) "d"x` = 0 if f is an ______ function.
`int_0^(2"a") "f"(x) "d"x = 2int_0^"a" "f"(x) "d"x`, if f(2a – x) = ______.
`int_0^(pi/2) sqrt(1 - sin2x) "d"x` is equal to ______.
If `int_0^"a" 1/(1 + 4x^2) "d"x = pi/8`, then a = ______.
`int_(-5)^5 x^7/(x^4 + 10) dx` = ______.
`int_a^b f(x)dx = int_a^b f(x - a - b)dx`.
The integral `int_0^2||x - 1| -x|dx` is equal to ______.
What is `int_0^(π/2)` sin 2x ℓ n (cot x) dx equal to ?
`int_0^(π/4) x. sec^2 x dx` = ______.
`int_-1^1 (17x^5 - x^4 + 29x^3 - 31x + 1)/(x^2 + 1) dx` is equal to ______.
Evaluate `int_-1^1 |x^4 - x|dx`.
Evaluate: `int_(-π//4)^(π//4) (cos 2x)/(1 + cos 2x)dx`.
Evaluate: `int_0^π x/(1 + sinx)dx`.
Evaluate the following definite integral:
`int_1^3 log x dx`
Evaluate the following integral:
`int_-9^9 x^3 / (4 - x^2) dx`
Evaluate the following integral:
`int_0^1 x(1-x)^5 dx`
Evaluate the following integral:
`int_-9^9x^3/(4-x^2)dx`