English

Find a particular solution of the differential equation dydx+ycotx=4xcosecx(x≠0), given that y = 0 when x=π2 - Mathematics

Advertisements
Advertisements

Question

Find a particular solution of the differential equation `dy/dx + y cot x = 4xcosec x(x != 0)`, given that y = 0 when `x = pi/2.`

Sum

Solution

Given the differential equation

`dy/dx + y cot x =  4x  cosec  x`                  ....(1)

Comparing with the linear equation `dy/dx + Py = Q`,

When  P = cot x, Q = 4x cosec x

∴ `I.F. = e^(int Pdx) = e^(int cot x  dx) = e^(log |sin x|) = sin x`

∴ The solution is `y. (I.F.) = int Q. (I.F.)  dx + C`

`therefore y sin x = int 4x  cosec x sin x dx + C`

`= int 4x dx + C = +  C`

`= (4x^2)/2 + C`

⇒ y sinx  = 2x2 + C                   ....(2)

When `x = pi/2, y = 0`

∴ `0 = 2 (pi^2/4) + C`

⇒ `C = -pi^2/2`

Putting `C = pi^2/2` in (2),

`y sinx  = 2x^2 - pi^2/2 ; (sin x ne 0)`

Which is the required solution.

shaalaa.com
  Is there an error in this question or solution?
Chapter 9: Differential Equations - Exercise 9.7 [Page 421]

APPEARS IN

NCERT Mathematics [English] Class 12
Chapter 9 Differential Equations
Exercise 9.7 | Q 13 | Page 421

RELATED QUESTIONS

Solve the differential equation cos(x +y) dy = dx hence find the particular solution for x = 0 and y = 0.


If x = Φ(t) differentiable function of ‘ t ' then prove that `int f(x) dx=intf[phi(t)]phi'(t)dt`


Solve the differential equation `dy/dx=(y+sqrt(x^2+y^2))/x`


Form the differential equation of the family of circles in the second quadrant and touching the coordinate axes.


Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:

y = x sin x : xy' = `y + x  sqrt (x^2 - y^2)`  (x ≠ 0 and x > y or x < -y)


Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:

`y = sqrt(a^2 - x^2 )  x in (-a,a) : x + y  dy/dx = 0(y != 0)`


The number of arbitrary constants in the general solution of a differential equation of fourth order are ______.


Find the differential equation of the family of concentric circles `x^2 + y^2 = a^2`


The solution of the differential equation \[\frac{dy}{dx} = 1 + x + y^2 + x y^2 , y\left( 0 \right) = 0\] is


The solution of the differential equation \[\frac{dy}{dx} + 1 = e^{x + y}\], is


The solution of x2 + y \[\frac{dy}{dx}\]= 4, is


The solution of the differential equation (x2 + 1) \[\frac{dy}{dx}\] + (y2 + 1) = 0, is


The solution of the differential equation \[\frac{dy}{dx} - ky = 0, y\left( 0 \right) = 1\] approaches to zero when x → ∞, if


The number of arbitrary constants in the particular solution of a differential equation of third order is


The solution of the differential equation \[\frac{dy}{dx} = \frac{y}{x} + \frac{\phi\left( \frac{y}{x} \right)}{\phi'\left( \frac{y}{x} \right)}\] is


\[\frac{dy}{dx} + \frac{y}{x} = \frac{y^2}{x^2}\]


(x + y − 1) dy = (x + y) dx


\[\frac{dy}{dx} - y \cot x = cosec\ x\]


\[\frac{dy}{dx} - y \tan x = e^x \sec x\]


Solve the differential equation:

(1 + y2) dx = (tan1 y x) dy


`(dy)/(dx)+ y tan x = x^n cos x, n ne− 1`


For the following differential equation, find the general solution:- \[\frac{dy}{dx} = \sqrt{4 - y^2}, - 2 < y < 2\]


For the following differential equation, find the general solution:- \[\frac{dy}{dx} = \left( 1 + x^2 \right)\left( 1 + y^2 \right)\]


For the following differential equation, find the general solution:- `y log y dx − x dy = 0`


For the following differential equation, find a particular solution satisfying the given condition:

\[x\left( x^2 - 1 \right)\frac{dy}{dx} = 1, y = 0\text{ when }x = 2\]


For the following differential equation, find a particular solution satisfying the given condition:- \[\cos\left( \frac{dy}{dx} \right) = a, y = 1\text{ when }x = 0\]


Solve the following differential equation:-

y dx + (x − y2) dy = 0


Solve the differential equation: `(d"y")/(d"x") - (2"x")/(1+"x"^2) "y" = "x"^2 + 2`


Solution of the differential equation `"dx"/x + "dy"/y` = 0 is ______.


x + y = tan–1y is a solution of the differential equation `y^2 "dy"/"dx" + y^2 + 1` = 0.


If y(x) is a solution of `((2 + sinx)/(1 + y))"dy"/"dx"` = – cosx and y (0) = 1, then find the value of `y(pi/2)`.


Solve: `y + "d"/("d"x) (xy) = x(sinx + logx)`


Solution of the differential equation tany sec2xdx + tanx sec2ydy = 0 is ______.


The solution of the equation (2y – 1)dx – (2x + 3)dy = 0 is ______.


General solution of `("d"y)/("d"x) + ytanx = secx` is ______.


The number of arbitrary constants in the general solution of a differential equation of order three is ______.


The solution of the differential equation `x(dy)/("d"x) + 2y = x^2` is ______.


General solution of `("d"y)/("d"x) + y` = sinx is ______.


The solution of differential equation coty dx = xdy is ______.


Find the general solution of the differential equation `x (dy)/(dx) = y(logy - logx + 1)`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×