Advertisements
Advertisements
Question
Find a particular solution of the differential equation `dy/dx + y cot x = 4xcosec x(x != 0)`, given that y = 0 when `x = pi/2.`
Solution
Given the differential equation
`dy/dx + y cot x = 4x cosec x` ....(1)
Comparing with the linear equation `dy/dx + Py = Q`,
When P = cot x, Q = 4x cosec x
∴ `I.F. = e^(int Pdx) = e^(int cot x dx) = e^(log |sin x|) = sin x`
∴ The solution is `y. (I.F.) = int Q. (I.F.) dx + C`
`therefore y sin x = int 4x cosec x sin x dx + C`
`= int 4x dx + C = + C`
`= (4x^2)/2 + C`
⇒ y sinx = 2x2 + C ....(2)
When `x = pi/2, y = 0`
∴ `0 = 2 (pi^2/4) + C`
⇒ `C = -pi^2/2`
Putting `C = pi^2/2` in (2),
`y sinx = 2x^2 - pi^2/2 ; (sin x ne 0)`
Which is the required solution.
APPEARS IN
RELATED QUESTIONS
Solve the differential equation cos(x +y) dy = dx hence find the particular solution for x = 0 and y = 0.
If x = Φ(t) differentiable function of ‘ t ' then prove that `int f(x) dx=intf[phi(t)]phi'(t)dt`
Solve the differential equation `dy/dx=(y+sqrt(x^2+y^2))/x`
Form the differential equation of the family of circles in the second quadrant and touching the coordinate axes.
Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:
y = x sin x : xy' = `y + x sqrt (x^2 - y^2)` (x ≠ 0 and x > y or x < -y)
Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:
`y = sqrt(a^2 - x^2 ) x in (-a,a) : x + y dy/dx = 0(y != 0)`
The number of arbitrary constants in the general solution of a differential equation of fourth order are ______.
Find the differential equation of the family of concentric circles `x^2 + y^2 = a^2`
The solution of the differential equation \[\frac{dy}{dx} = 1 + x + y^2 + x y^2 , y\left( 0 \right) = 0\] is
The solution of the differential equation \[\frac{dy}{dx} + 1 = e^{x + y}\], is
The solution of x2 + y2 \[\frac{dy}{dx}\]= 4, is
The solution of the differential equation (x2 + 1) \[\frac{dy}{dx}\] + (y2 + 1) = 0, is
The solution of the differential equation \[\frac{dy}{dx} - ky = 0, y\left( 0 \right) = 1\] approaches to zero when x → ∞, if
The number of arbitrary constants in the particular solution of a differential equation of third order is
The solution of the differential equation \[\frac{dy}{dx} = \frac{y}{x} + \frac{\phi\left( \frac{y}{x} \right)}{\phi'\left( \frac{y}{x} \right)}\] is
\[\frac{dy}{dx} + \frac{y}{x} = \frac{y^2}{x^2}\]
(x + y − 1) dy = (x + y) dx
\[\frac{dy}{dx} - y \cot x = cosec\ x\]
\[\frac{dy}{dx} - y \tan x = e^x \sec x\]
Solve the differential equation:
(1 + y2) dx = (tan−1 y − x) dy
`(dy)/(dx)+ y tan x = x^n cos x, n ne− 1`
For the following differential equation, find the general solution:- \[\frac{dy}{dx} = \sqrt{4 - y^2}, - 2 < y < 2\]
For the following differential equation, find the general solution:- \[\frac{dy}{dx} = \left( 1 + x^2 \right)\left( 1 + y^2 \right)\]
For the following differential equation, find the general solution:- `y log y dx − x dy = 0`
For the following differential equation, find a particular solution satisfying the given condition:
\[x\left( x^2 - 1 \right)\frac{dy}{dx} = 1, y = 0\text{ when }x = 2\]
For the following differential equation, find a particular solution satisfying the given condition:- \[\cos\left( \frac{dy}{dx} \right) = a, y = 1\text{ when }x = 0\]
Solve the following differential equation:-
y dx + (x − y2) dy = 0
Solve the differential equation: `(d"y")/(d"x") - (2"x")/(1+"x"^2) "y" = "x"^2 + 2`
Solution of the differential equation `"dx"/x + "dy"/y` = 0 is ______.
x + y = tan–1y is a solution of the differential equation `y^2 "dy"/"dx" + y^2 + 1` = 0.
If y(x) is a solution of `((2 + sinx)/(1 + y))"dy"/"dx"` = – cosx and y (0) = 1, then find the value of `y(pi/2)`.
Solve: `y + "d"/("d"x) (xy) = x(sinx + logx)`
Solution of the differential equation tany sec2xdx + tanx sec2ydy = 0 is ______.
The solution of the equation (2y – 1)dx – (2x + 3)dy = 0 is ______.
General solution of `("d"y)/("d"x) + ytanx = secx` is ______.
The number of arbitrary constants in the general solution of a differential equation of order three is ______.
The solution of the differential equation `x(dy)/("d"x) + 2y = x^2` is ______.
General solution of `("d"y)/("d"x) + y` = sinx is ______.
The solution of differential equation coty dx = xdy is ______.
Find the general solution of the differential equation `x (dy)/(dx) = y(logy - logx + 1)`.