Advertisements
Advertisements
Question
Integrate the functions:
`sqrt(tanx)/(sinxcos x)`
Solution
Let `I = int (sqrt tan x)/(sinx cos x)` dx
`= int sqrt tan x/(sin x/ cos x * cos ^2) dx`
`= int sqrt tanx/tan x * sec^2 x dx`
`I = int (tan x)^((-1)/2)* sec^2 x dx`
Put tan x = t
sec2 x dx = dt
Hence, `I = int t^((-1)/2)dt = (t ^(1/2 + 1))/(1/2 + 1) + C`
`= 2 t^(1/2) + C`
`= 2 sqrt(tan x) + C`
APPEARS IN
RELATED QUESTIONS
Evaluate : `int_0^pi(x)/(a^2cos^2x+b^2sin^2x)dx`
Prove that `int_a^bf(x)dx=f(a+b-x)dx.` Hence evaluate : `int_a^bf(x)/(f(x)+f(a-b-x))dx`
Find : `int((2x-5)e^(2x))/(2x-3)^3dx`
Integrate the functions:
`(2cosx - 3sinx)/(6cos x + 4 sin x)`
Integrate the functions:
`sqrt(sin 2x) cos 2x`
Integrate the functions:
`(x^3 sin(tan^(-1) x^4))/(1 + x^8)`
`(10x^9 + 10^x log_e 10)/(x^10 + 10^x) dx` equals:
Solve: dy/dx = cos(x + y)
Write a value of
Write a value of\[\int\text{ tan x }\sec^3 x\ dx\]
Write a value of\[\int\frac{1}{x \left( \log x \right)^n} \text { dx }\].
`int "dx"/(9"x"^2 + 1)= ______. `
Evaluate the following integrals:
`int (cos2x)/sin^2x dx`
Evaluate the following integrals : `int sin 4x cos 3x dx`
Integrate the following functions w.r.t. x : `e^x.log (sin e^x)/tan(e^x)`
Integrate the following functions w.r.t. x : `(e^(2x) + 1)/(e^(2x) - 1)`
Integrate the following functions w.r.t. x : `(7 + 4 + 5x^2)/(2x + 3)^(3/2)`
Integrate the following functions w.r.t. x : `(1)/(x.logx.log(logx)`.
Integrate the following functions w.r.t. x : `3^(cos^2x) sin 2x`
Integrate the following with respect to the respective variable : `(x - 2)^2sqrt(x)`
Evaluate the following.
`int ("e"^"x" + "e"^(- "x"))^2 ("e"^"x" - "e"^(-"x"))`dx
Evaluate the following.
`int (1 + "x")/("x" + "e"^"-x")` dx
Evaluate the following.
`int ((3"e")^"2t" + 5)/(4"e"^"2t" - 5)`dt
Evaluate the following.
`int 1/(7 + 6"x" - "x"^2)` dx
To find the value of `int ((1 + logx))/x` dx the proper substitution is ______
State whether the following statement is True or False:
`int"e"^(4x - 7) "d"x = ("e"^(4x - 7))/(-7) + "c"`
`int x^3"e"^(x^2) "d"x`
`int sec^6 x tan x "d"x` = ______.
`int ("d"x)/(x(x^4 + 1))` = ______.
`int sqrt(x^2 - a^2)/x dx` = ______.
Write `int cotx dx`.
Solve the following Evaluate.
`int(5x^2 - 6x + 3)/(2x - 3)dx`
If f ′(x) = 4x3 − 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x)
Evaluate the following.
`int "x"^3/sqrt(1 + "x"^4)` dx
Evaluate `int1/(x(x-1))dx`
Evaluate the following.
`int1/(x^2 + 4x - 5) dx`
Evaluate the following.
`int1/(x^2+4x-5)dx`
Evaluate the following:
`int x^3/(sqrt(1 + x^4)) dx`