Advertisements
Advertisements
Question
Integrate the function in x sin-1 x.
Solution
Let `I = int x sin^-1 x dx = int sin^-1 x* x dx`
`= sin^-1 x* (x^2/2) - int [d/dx (sin^-1 x) * x^2/2] dx`
`= sin^-1 x (x^2/2) - int 1/sqrt (1 - x^2)* x^2/2 dx`
`= x^2/2 sin^-1 x - 1/2 int x^2/ sqrt (1 - x^2) dx`
`= x^2/2 sin^-1 x - 1/2 I_1`
`I = x^2/2 sin^-1 x - 1/2 I_1` ....(i)
Where `I_1 = int x^2/sqrt (1 - x^2) dx`
Put x = sin θ
⇒ dx = cosθ dθ
∴ `I_1 = int (sin^2 theta)/sqrt (1- sin^2 theta) cos d theta`
`= int (sin^2 theta)/(cos theta) * cos theta d theta`
`= int sin^2 theta d theta = 1/2 int (1 - cos 2 theta) d theta`
`= 1/2int d theta - 1/2 int cos 2 theta d theta 1/2 theta - 1/2 (sin 2 theta)/2 + C`
`1/2 theta - 1/2 sin theta cos theta + C`
`1/2 sin^-1x - 1/2x sqrt(1 - x^2) + C` ....(ii)
`[∵ sin theta = x ⇒ cos theta = sqrt (1 - sin^2 theta) = sqrt (1 - x^2)]`
From (i) and (ii), we get
∴ `I = x^2/2 sin^-1 x - 1/2 [1/2 sin^-1 x - 1/2 x sqrt(1 - x^2)] + C`
`= 1/4 sin^-1 x* (2x^2 - 1) + (x sqrt (1 - x^2))/4 + C`
APPEARS IN
RELATED QUESTIONS
If `int_(-pi/2)^(pi/2)sin^4x/(sin^4x+cos^4x)dx`, then the value of I is:
(A) 0
(B) π
(C) π/2
(D) π/4
`int1/xlogxdx=...............`
(A)log(log x)+ c
(B) 1/2 (logx )2+c
(C) 2log x + c
(D) log x + c
Integrate the function in tan-1 x.
Integrate the function in `(xe^x)/(1+x)^2`.
`int e^x sec x (1 + tan x) dx` equals:
Evaluate the following : `int x^2tan^-1x.dx`
Evaluate the following : `int x^3.logx.dx`
Integrate the following functions w.r.t. x : `sqrt(5x^2 + 3)`
Integrate the following functions w.r.t. x : `xsqrt(5 - 4x - x^2)`
Integrate the following functions w.r.t. x : [2 + cot x – cosec2x]ex
Integrate the following functions w.r.t. x : `[x/(x + 1)^2].e^x`
Integrate the following functions w.r.t. x : `e^(sin^-1x)*[(x + sqrt(1 - x^2))/sqrt(1 - x^2)]`
Choose the correct options from the given alternatives :
`int tan(sin^-1 x)*dx` =
Choose the correct options from the given alternatives :
`int cos -(3)/(7)x*sin -(11)/(7)x*dx` =
Integrate the following with respect to the respective variable : `(3 - 2sinx)/(cos^2x)`
Integrate the following w.r.t. x: `(1 + log x)^2/x`
Integrate the following w.r.t.x : `(1)/(x^3 sqrt(x^2 - 1)`
Evaluate the following.
`int "x"^2 "e"^"3x"`dx
`int ("x" + 1/"x")^3 "dx"` = ______
`int 1/sqrt(2x^2 - 5) "d"x`
`int ("d"x)/(x - x^2)` = ______
State whether the following statement is True or False:
If `int((x - 1)"d"x)/((x + 1)(x - 2))` = A log|x + 1| + B log|x – 2|, then A + B = 1
∫ log x · (log x + 2) dx = ?
`int log x * [log ("e"x)]^-2` dx = ?
Find `int_0^1 x(tan^-1x) "d"x`
Evaluate the following:
`int ((cos 5x + cos 4x))/(1 - 2 cos 3x) "d"x`
`int tan^-1 sqrt(x) "d"x` is equal to ______.
If u and v ore differentiable functions of x. then prove that:
`int uv dx = u intv dx - int [(du)/(d) intv dx]dx`
Hence evaluate `intlog x dx`
If `π/2` < x < π, then `intxsqrt((1 + cos2x)/2)dx` = ______.
Find: `int e^(x^2) (x^5 + 2x^3)dx`.
`int(1-x)^-2 dx` = ______
Evaluate `int(3x-2)/((x+1)^2(x+3)) dx`
`int (sin^-1 sqrt(x) + cos^-1 sqrt(x))dx` = ______.
Prove that `int sqrt(x^2 - a^2)dx = x/2 sqrt(x^2 - a^2) - a^2/2 log(x + sqrt(x^2 - a^2)) + c`
Evaluate the following.
`intx^3 e^(x^2) dx`
Evaluate the following.
`intx^3/sqrt(1+x^4) dx`
Evaluate:
`inte^x "cosec" x(1 - cot x)dx`