English

Integrate the function in x sin-1 x. - Mathematics

Advertisements
Advertisements

Question

Integrate the function in x sin-1 x.

Sum

Solution

Let `I = int x sin^-1 x dx = int sin^-1 x* x dx`

`= sin^-1 x* (x^2/2) - int [d/dx (sin^-1 x) * x^2/2]  dx`

`= sin^-1 x (x^2/2) - int 1/sqrt (1 - x^2)* x^2/2  dx`

`= x^2/2 sin^-1 x - 1/2 int x^2/ sqrt (1 - x^2) dx`

`= x^2/2 sin^-1 x - 1/2 I_1`

`I = x^2/2 sin^-1 x - 1/2 I_1`              ....(i)

Where `I_1 = int x^2/sqrt (1 - x^2)  dx`

Put x = sin θ 

⇒ dx = cosθ dθ

∴ `I_1 = int (sin^2 theta)/sqrt (1- sin^2 theta) cos d theta`

`= int (sin^2 theta)/(cos theta) * cos theta d theta`

`= int sin^2 theta d theta  = 1/2 int (1 - cos 2 theta) d theta`

`= 1/2int d theta - 1/2 int cos 2 theta d theta 1/2 theta - 1/2 (sin 2 theta)/2 + C`

  `1/2 theta - 1/2 sin theta cos theta + C`

`1/2 sin^-1x - 1/2x sqrt(1 - x^2) + C`                 ....(ii)

`[∵ sin theta = x ⇒ cos theta = sqrt (1 - sin^2 theta) = sqrt (1 - x^2)]`

From (i) and (ii), we get

∴ `I = x^2/2 sin^-1 x - 1/2 [1/2 sin^-1 x - 1/2 x sqrt(1 - x^2)] + C`

`= 1/4 sin^-1 x* (2x^2 - 1) + (x sqrt (1 - x^2))/4 + C`

shaalaa.com
  Is there an error in this question or solution?
Chapter 7: Integrals - Exercise 7.6 [Page 327]

APPEARS IN

NCERT Mathematics [English] Class 12
Chapter 7 Integrals
Exercise 7.6 | Q 7 | Page 327

RELATED QUESTIONS

If `int_(-pi/2)^(pi/2)sin^4x/(sin^4x+cos^4x)dx`, then the value of I is:

(A) 0

(B) π

(C) π/2

(D) π/4


`int1/xlogxdx=...............`

(A)log(log x)+ c

(B) 1/2 (logx )2+c

(C) 2log x + c

(D) log x + c


Integrate the function in tan-1 x.


Integrate the function in `(xe^x)/(1+x)^2`.


`int e^x sec x (1 +   tan x) dx` equals:


Evaluate the following : `int x^2tan^-1x.dx`


Evaluate the following : `int x^3.logx.dx`


Integrate the following functions w.r.t. x : `sqrt(5x^2 + 3)`


Integrate the following functions w.r.t. x : `xsqrt(5 - 4x - x^2)`


Integrate the following functions w.r.t. x : [2 + cot x – cosec2x]e 


Integrate the following functions w.r.t. x : `[x/(x + 1)^2].e^x`


Integrate the following functions w.r.t. x : `e^(sin^-1x)*[(x + sqrt(1 - x^2))/sqrt(1 - x^2)]`


Choose the correct options from the given alternatives :

`int tan(sin^-1 x)*dx` =


Choose the correct options from the given alternatives :

`int cos -(3)/(7)x*sin -(11)/(7)x*dx` =


Integrate the following with respect to the respective variable : `(3 - 2sinx)/(cos^2x)`


Integrate the following w.r.t. x: `(1 + log x)^2/x`


Integrate the following w.r.t.x : `(1)/(x^3 sqrt(x^2 - 1)`


Evaluate the following.

`int "x"^2 "e"^"3x"`dx


`int ("x" + 1/"x")^3 "dx"` = ______


`int 1/sqrt(2x^2 - 5)  "d"x`


`int ("d"x)/(x - x^2)` = ______


State whether the following statement is True or False:

If `int((x - 1)"d"x)/((x + 1)(x - 2))` = A log|x + 1|  + B log|x – 2|, then A + B = 1


∫ log x · (log x + 2) dx = ?


`int log x * [log ("e"x)]^-2` dx = ?


Find `int_0^1 x(tan^-1x)  "d"x`


Evaluate the following:

`int ((cos 5x + cos 4x))/(1 - 2 cos 3x) "d"x`


`int tan^-1 sqrt(x)  "d"x` is equal to ______.


If u and v ore differentiable functions of x. then prove that:

`int uv  dx = u intv  dx - int [(du)/(d) intv  dx]dx`

Hence evaluate `intlog x  dx`


If `π/2` < x < π, then `intxsqrt((1 + cos2x)/2)dx` = ______.


Find: `int e^(x^2) (x^5 + 2x^3)dx`.


`int(1-x)^-2 dx` = ______


Evaluate `int(3x-2)/((x+1)^2(x+3))  dx`


`int (sin^-1 sqrt(x) + cos^-1 sqrt(x))dx` = ______.


Prove that `int sqrt(x^2 - a^2)dx = x/2 sqrt(x^2 - a^2) - a^2/2 log(x + sqrt(x^2 - a^2)) + c`


Evaluate the following.

`intx^3  e^(x^2) dx`


Evaluate the following.

`intx^3/sqrt(1+x^4)  dx`


Evaluate:

`inte^x "cosec"  x(1 - cot x)dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×