English

Find the derivative of x–4 (3 – 4x–5). - Mathematics

Advertisements
Advertisements

Question

Find the derivative of x–4 (3 – 4x–5).

Sum

Solution

Let f(x) = x–4 (3 – 4x–5)

By Leibnitz product rule,

f'(x) = x-4ddx(3-4x-5)+(3-4x-5)ddx(x-4)

= x-4 {0 - 4 (-5) x-5-1} + (3 - 4x-5) (-4) x-4-1

= x-4 (20x-6) + (3 - 4x-5) (-4x-5)

= 20x-10 + 12x-5 + 16x-10

= 36x-10 - 12x-5

= -12x5+36x10

shaalaa.com
  Is there an error in this question or solution?
Chapter 13: Limits and Derivatives - Exercise 13.2 [Page 313]

APPEARS IN

NCERT Mathematics [English] Class 11
Chapter 13 Limits and Derivatives
Exercise 13.2 | Q 9.5 | Page 313

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Find the derivative of 2x-34


Find the derivative of x5 (3 – 6x–9).


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

(ax + b)n (cx + d)m


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

secx-1secx+1


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

x4 (5 sin x – 3 cos x)


Find the derivative of f (x) = 99x at x = 100 


 x2 + x + 3


(x + 2)3


x ex


Differentiate each of the following from first principle:

sin2x 


Differentiate each of the following from first principle:

eax+b


Differentiate each of the following from first principle:

ax


Differentiate each of the following from first principle:

3x2


 tan 2


a0 xn + a1 xn−1 + a2 xn2 + ... + an1 x + an


(x+5)(2x21)x


cos (x + a)


 If y=(sinx2+cosx2)2, find dydxatx=π6.


Ify=xa+ax, prove that 2xydydx=(xaax)  


If for f (x) = λ x2 + μ x + 12, f' (4) = 15 and f' (2) = 11, then find λ and μ. 


x5 ex + x6 log 


logx2 x


exlogxtanx 


x2cosπ4sinx 


(ax + b) (a + d)2


(ax + b)n (cx d)


x+ex1+logx 


x1+tanx 


a+xax 


3xx+tanx 


x5cosxsinx 


xsinnx


Write the value of limxcf(x)f(c)xc 


If x < 2, then write the value of ddx(x24x+4) 


If f (x) = x2|x|, write ddx(f(x)) 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×
Our website is made possible by ad-free subscriptions or displaying online advertisements to our visitors.
If you don't like ads you can support us by buying an ad-free subscription or please consider supporting us by disabling your ad blocker. Thank you.