Advertisements
Advertisements
Question
Integrate the rational function:
`(1 - x^2)/(x(1-2x))`
Solution
Since `(1-x^2)/(x (1 - 2x)) = (1 - x^2)/(x - 2x^2)` is an improper fraction, therefore we convert it into a peoper fraction by long division method, we get
`(x^2 - 1)/(2x^2 - x) = 1/2 + (x/2 - 1)/(2x^2 - x)`
`= int (-1 + x^2)/(-x + 2x^2) dx`
`= 1/2 int dx 1/2 int (x-2)/(2x^2 - x) dx`
Now, `(x - 2)/(2x^2 - x) = (x - 2)/(x (2x - 1))`
`= A/x + B/(2x - 1)`
⇒ x - 2 = A (2x - 1) + Bx ......(i)
Putting x = 0 in (i), we get
-2 = A (-1)
⇒ A = 2
Putting `x = 1/2` in (i), we get
`1/2 -2= B (1/2)`
⇒ 1 - 4 = B
⇒ B = -3
∴ `(x - 2)/ (2x^2 - x) = 2/x - 3/ (2x - 1) = 2/x + 3/ (1 - 2x)`
We have,
`int (1 - x^2)/(x (1 - 2x)) dx`
`= 1/2 int 1 dx + 1/2 int (2/x + 3 /(1 - 2x)) dx`
`= 1/2x + log |x| -3/4 log |1 - 2x| + C`
APPEARS IN
RELATED QUESTIONS
Integrate the rational function:
`1/(x^2 - 9)`
Integrate the rational function:
`x/((x-1)(x- 2)(x - 3))`
Integrate the rational function:
`(2x - 3)/((x^2 -1)(2x + 3))`
Integrate the rational function:
`2/((1-x)(1+x^2))`
Integrate the rational function:
`(cos x)/((1-sinx)(2 - sin x))` [Hint: Put sin x = t]
Integrate the rational function:
`1/(x(x^4 - 1))`
Evaluate : `∫(x+1)/((x+2)(x+3))dx`
Integrate the following w.r.t. x : `(x^2 + 2)/((x - 1)(x + 2)(x + 3)`
Integrate the following w.r.t. x : `(x^2 + x - 1)/(x^2 + x - 6)`
Integrate the following w.r.t. x:
`(6x^3 + 5x^2 - 7)/(3x^2 - 2x - 1)`
Integrate the following w.r.t. x : `(12x^2 - 2x - 9)/((4x^2 - 1)(x + 3)`
Integrate the following w.r.t. x : `(2x)/((2 + x^2)(3 + x^2)`
Integrate the following w.r.t. x : `(3x - 2)/((x + 1)^2(x + 3)`
Integrate the following w.r.t. x : `(1)/(x(1 + 4x^3 + 3x^6)`
Integrate the following w.r.t. x : `(1)/(sinx + sin2x)`
Integrate the following with respect to the respective variable : `(6x + 5)^(3/2)`
Integrate the following w.r.t. x: `(x^2 + 3)/((x^2 - 1)(x^2 - 2)`
Integrate the following w.r.t.x:
`x^2/((x - 1)(3x - 1)(3x - 2)`
Integrate the following w.r.t.x : `sqrt(tanx)/(sinx*cosx)`
`int x^2sqrt("a"^2 - x^6) "d"x`
`int sqrt(4^x(4^x + 4)) "d"x`
`int x^3tan^(-1)x "d"x`
`int (x + sinx)/(1 - cosx) "d"x`
`int x^2/((x^2 + 1)(x^2 - 2)(x^2 + 3)) "d"x`
`int xcos^3x "d"x`
Choose the correct alternative:
`int sqrt(1 + x) "d"x` =
`int x/((x - 1)^2 (x + 2)) "d"x`
`int (3"e"^(2"t") + 5)/(4"e"^(2"t") - 5) "dt"`
Evaluate the following:
`int "e"^(-3x) cos^3x "d"x`
Evaluate the following:
`int sqrt(tanx) "d"x` (Hint: Put tanx = t2)
If f(x) = `int(3x - 1)x(x + 1)(18x^11 + 15x^10 - 10x^9)^(1/6)dx`, where f(0) = 0, is in the form of `((18x^α + 15x^β - 10x^γ)^δ)/θ`, then (3α + 4β + 5γ + 6δ + 7θ) is ______. (Where δ is a rational number in its simplest form)
`int 1/(x^2 + 1)^2 dx` = ______.
Evaluate.
`int (5x^2 - 6x + 3)/(2x - 3)dx`