English

Integrate the rational function: 1-x2x(1-2x) - Mathematics

Advertisements
Advertisements

Question

Integrate the rational function:

`(1 - x^2)/(x(1-2x))`

Sum

Solution

Since `(1-x^2)/(x (1 - 2x)) = (1 - x^2)/(x - 2x^2)` is an improper fraction, therefore we convert it into a peoper fraction by long division method, we get

`(x^2 - 1)/(2x^2 - x) = 1/2 + (x/2 - 1)/(2x^2 - x)`

`= int (-1 + x^2)/(-x + 2x^2) dx`

`= 1/2 int dx 1/2 int (x-2)/(2x^2 - x) dx`

Now, `(x - 2)/(2x^2 - x) = (x - 2)/(x (2x - 1))`

`= A/x + B/(2x - 1)`

⇒ x - 2 = A (2x - 1) + Bx                     ......(i)

Putting x = 0 in (i), we get

-2 = A (-1)

⇒ A = 2

Putting `x = 1/2` in (i), we get

`1/2 -2= B (1/2)`

⇒ 1 - 4 = B

⇒ B = -3

∴ `(x - 2)/ (2x^2 - x) = 2/x - 3/ (2x - 1) = 2/x + 3/ (1 - 2x)`

We have,

`int (1 - x^2)/(x (1 - 2x)) dx`

`= 1/2 int 1 dx + 1/2 int (2/x + 3 /(1 - 2x)) dx`

`= 1/2x + log |x| -3/4 log |1 - 2x| + C`

shaalaa.com
  Is there an error in this question or solution?
Chapter 7: Integrals - Exercise 7.5 [Page 322]

APPEARS IN

NCERT Mathematics [English] Class 12
Chapter 7 Integrals
Exercise 7.5 | Q 6 | Page 322

RELATED QUESTIONS

Integrate the rational function:

`1/(x^2 - 9)`


Integrate the rational function:

`x/((x-1)(x- 2)(x - 3))`


Integrate the rational function:

`(2x - 3)/((x^2 -1)(2x + 3))`


Integrate the rational function:

`2/((1-x)(1+x^2))`


Integrate the rational function:

`(cos x)/((1-sinx)(2 - sin x))` [Hint: Put sin x = t]


Integrate the rational function:

`1/(x(x^4 - 1))`


Evaluate : `∫(x+1)/((x+2)(x+3))dx`


Integrate the following w.r.t. x : `(x^2 + 2)/((x - 1)(x + 2)(x + 3)`


Integrate the following w.r.t. x : `(x^2 + x - 1)/(x^2 + x - 6)`


Integrate the following w.r.t. x:

`(6x^3 + 5x^2 - 7)/(3x^2 - 2x - 1)`


Integrate the following w.r.t. x : `(12x^2 - 2x - 9)/((4x^2 - 1)(x + 3)`


Integrate the following w.r.t. x : `(2x)/((2 + x^2)(3 + x^2)`


Integrate the following w.r.t. x : `(3x - 2)/((x + 1)^2(x + 3)`


Integrate the following w.r.t. x : `(1)/(x(1 + 4x^3 + 3x^6)`


Integrate the following w.r.t. x : `(1)/(sinx + sin2x)`


Integrate the following with respect to the respective variable : `(6x + 5)^(3/2)`


Integrate the following w.r.t. x: `(x^2 + 3)/((x^2 - 1)(x^2 - 2)`


Integrate the following w.r.t.x:

`x^2/((x - 1)(3x - 1)(3x - 2)`


Integrate the following w.r.t.x : `sqrt(tanx)/(sinx*cosx)`


`int x^2sqrt("a"^2 - x^6)  "d"x`


`int sqrt(4^x(4^x + 4))  "d"x`


`int x^3tan^(-1)x  "d"x`


`int (x + sinx)/(1 - cosx)  "d"x`


`int  x^2/((x^2 + 1)(x^2 - 2)(x^2 + 3))  "d"x`


`int xcos^3x  "d"x`


Choose the correct alternative:

`int sqrt(1 + x)  "d"x` =


`int x/((x - 1)^2 (x + 2)) "d"x`


`int (3"e"^(2"t") + 5)/(4"e"^(2"t") - 5)  "dt"`


Evaluate the following:

`int "e"^(-3x) cos^3x  "d"x`


Evaluate the following:

`int sqrt(tanx)  "d"x`  (Hint: Put tanx = t2)


If f(x) = `int(3x - 1)x(x + 1)(18x^11 + 15x^10 - 10x^9)^(1/6)dx`, where f(0) = 0, is in the form of `((18x^α + 15x^β - 10x^γ)^δ)/θ`, then (3α + 4β + 5γ + 6δ + 7θ) is ______. (Where δ is a rational number in its simplest form)


`int 1/(x^2 + 1)^2 dx` = ______.


Evaluate.

`int (5x^2 - 6x + 3)/(2x - 3)dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×