Advertisements
Advertisements
Question
Differentiate the function with respect to x.
`x^x - 2^(sin x)`
Solution
Let, y = xx - 2sin x
Again, let u = xx, v = 2sin x
y = u - v
Taking logarithm of both sides of u = xx,
log u = log xx = x log x
Differentiating both sides with respect to x,
`1/u (du)/dx = x d/dx log x + log x d/dx (x)`
`=> 1/u (du)/dx = x * 1/x + log x xx 1/u (du)/dx = 1 + log x` ...(1)
`therefore (du)/dx = u (1 + log x) = x^x (1 + log x)` ...(2)
Now, from `v = 2^(sin x)`
`(dv)/dx= 2^ (sin x) log 2 d/dx (sin x)`
`= 2^(sin x) log 2 cos x` ...(3)
From equation (1), y = u – v
`therefore dy/dx = (du)/dx - (dv)/dx`
Putting the values of `(du)/dx` from equation (2) and `(dv)/dx` from (3),
`dy/dx = x^x (1 + log x) - 2^(sin x) (cos x. log 2)`
APPEARS IN
RELATED QUESTIONS
If `y=log[x+sqrt(x^2+a^2)] ` show that `(x^2+a^2)(d^2y)/(dx^2)+xdy/dx=0`
Differentiate the function with respect to x.
cos x . cos 2x . cos 3x
Differentiate the function with respect to x.
`(log x)^(cos x)`
Differentiate the function with respect to x.
(log x)x + xlog x
Differentiate the function with respect to x.
xsin x + (sin x)cos x
Find `dy/dx`for the function given in the question:
xy + yx = 1
If u, v and w are functions of x, then show that `d/dx(u.v.w) = (du)/dx v.w+u. (dv)/dx.w + u.v. (dw)/dx` in two ways-first by repeated application of product rule, second by logarithmic differentiation.
If cos y = x cos (a + y), with cos a ≠ ± 1, prove that `dy/dx = cos^2(a+y)/(sin a)`
If x = a (cos t + t sin t) and y = a (sin t – t cos t), find `(d^2y)/dx^2`
if `x^m y^n = (x + y)^(m + n)`, prove that `(d^2y)/(dx^2)= 0`
Find `(dy)/(dx) , if y = sin ^(-1) [2^(x +1 )/(1+4^x)]`
Differentiate
log (1 + x2) w.r.t. tan-1 (x)
Differentiate : log (1 + x2) w.r.t. cot-1 x.
If y = (log x)x + xlog x, find `"dy"/"dx".`
`"If" y = sqrt(logx + sqrt(log x + sqrt(log x + ... ∞))), "then show that" dy/dx = (1)/(x(2y - 1).`
If y = `x^(x^(x^(.^(.^.∞))`, then show that `"dy"/"dx" = y^2/(x(1 - logy).`.
If ey = yx, then show that `"dy"/"dx" = (logy)^2/(log y - 1)`.
If f(x) = logx (log x) then f'(e) is ______
If y = 5x. x5. xx. 55 , find `("d"y)/("d"x)`
If y = `(sin x)^sin x` , then `"dy"/"dx"` = ?
`"d"/"dx" [(cos x)^(log x)]` = ______.
Derivative of `log_6`x with respect 6x to is ______
`log (x + sqrt(x^2 + "a"))`
`log [log(logx^5)]`
If xm . yn = (x + y)m+n, prove that `"dy"/"dx" = y/x`
`lim_("x" -> -2) sqrt ("x"^2 + 5 - 3)/("x" + 2)` is equal to ____________.
If `f(x) = log [e^x ((3 - x)/(3 + x))^(1/3)]`, then `f^'(1)` is equal to
Given f(x) = `log((1 + x)/(1 - x))` and g(x) = `(3x + x^3)/(1 + 3x^2)`, then fog(x) equals
If `log_10 ((x^3 - y^3)/(x^3 + y^3))` = 2 then `dy/dx` = ______.
If `log_10 ((x^2 - y^2)/(x^2 + y^2))` = 2, then `dy/dx` is equal to ______.
If y = `9^(log_3x)`, find `dy/dx`.
Evaluate:
`int log x dx`
Find the derivative of `y = log x + 1/x` with respect to x.