English

Find the derivative of x–3 (5 + 3x). - Mathematics

Advertisements
Advertisements

Question

Find the derivative of x–3 (5 + 3x).

Sum

Solution

Let f (x) = x– 3 (5 + 3x)     ...(1)

Differentiating (1) with respect to x, we get

f'(x) = (x-3) (5 + 3x) + (x-3) (5 + 3x)

= f'(x) = (-3) x-3-1 (5 + 3x) + (x-3) (0 + 3)

= `3x-4 (5 + 3x) + x-3. (3)

= -15x-4 + 9x-3 + 3x-3

= -15x-4 - 6x-3

= `(-15)/x^4 - 6/x^3`

∴ f'(x) = `(-3)/ x^4 (5 + 2x)`

shaalaa.com
  Is there an error in this question or solution?
Chapter 13: Limits and Derivatives - Exercise 13.2 [Page 313]

APPEARS IN

NCERT Mathematics [English] Class 11
Chapter 13 Limits and Derivatives
Exercise 13.2 | Q 9.3 | Page 313

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

For the function

f(x) = `x^100/100 + x^99/99 + ...+ x^2/2 + x + 1`

Prove that f'(1) = 100 f'(0)


Find the derivative of `2x - 3/4`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(1 + 1/x)/(1- 1/x)`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`4sqrtx - 2`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

(ax + b)n (cx + d)m


Find the derivative of f (x) = 3x at x = 2 


Find the derivative of (x) = tan x at x = 0 


\[\frac{1}{\sqrt{x}}\]


\[\frac{x + 2}{3x + 5}\]


Differentiate each of the following from first principle:

ex


Differentiate  of the following from first principle:

e3x


Differentiate  of the following from first principle:

sin (x + 1)


Differentiate of the following from first principle:

 x cos x


Differentiate each of the following from first principle: 

sin x + cos x


Differentiate each of the following from first principle:

\[a^\sqrt{x}\]


tan (2x + 1) 


\[\cos \sqrt{x}\]


\[\tan \sqrt{x}\]


\[\left( x + \frac{1}{x} \right)\left( \sqrt{x} + \frac{1}{\sqrt{x}} \right)\] 


\[\left( \sqrt{x} + \frac{1}{\sqrt{x}} \right)^3\] 


\[\frac{a \cos x + b \sin x + c}{\sin x}\]


a0 xn + a1 xn−1 + a2 xn2 + ... + an1 x + an


cos (x + a)


Find the slope of the tangent to the curve (x) = 2x6 + x4 − 1 at x = 1.


x2 sin x log 


(1 − 2 tan x) (5 + 4 sin x)


Differentiate each of the following functions by the product rule and the other method and verify that answer from both the methods is the same. 

 (3x2 + 2)2


(ax + b)n (cx d)


\[\frac{x}{1 + \tan x}\] 


\[\frac{x \sin x}{1 + \cos x}\]


\[\frac{2^x \cot x}{\sqrt{x}}\] 


\[\frac{\sin x - x \cos x}{x \sin x + \cos x}\]


\[\frac{x^2 - x + 1}{x^2 + x + 1}\] 


Write the value of \[\frac{d}{dx}\left( x \left| x \right| \right)\]


Mark the correct alternative in each of the following: 

If\[f\left( x \right) = \frac{x^n - a^n}{x - a}\] then \[f'\left( a \right)\] 


Find the derivative of x2 cosx.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×