English

Find the derivative of x–4 (3 – 4x–5). - Mathematics

Advertisements
Advertisements

Question

Find the derivative of x–4 (3 – 4x–5).

Sum

Solution

Let f(x) = x–4 (3 – 4x–5)

By Leibnitz product rule,

f'(x) = `x^-4 d/(dx) (3 - 4x^-5) + (3 - 4x^-5) d/dx(x^-4)`

= x-4 {0 - 4 (-5) x-5-1} + (3 - 4x-5) (-4) x-4-1

= x-4 (20x-6) + (3 - 4x-5) (-4x-5)

= 20x-10 + 12x-5 + 16x-10

= 36x-10 - 12x-5

= `-12/x^5 + 36/x^10`

shaalaa.com
  Is there an error in this question or solution?
Chapter 13: Limits and Derivatives - Exercise 13.2 [Page 313]

APPEARS IN

NCERT Mathematics [English] Class 11
Chapter 13 Limits and Derivatives
Exercise 13.2 | Q 9.5 | Page 313

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Find the derivative of 99x at x = 100.


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

(ax + b) (cx + d)2


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(1 + 1/x)/(1- 1/x)`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`1/(ax^2 + bx + c)`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`4sqrtx - 2`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

x4 (5 sin x – 3 cos x)


\[\frac{1}{\sqrt{x}}\]


\[\frac{1}{x^3}\]


\[\frac{x^2 - 1}{x}\]


\[\frac{x + 1}{x + 2}\]


\[\frac{x + 2}{3x + 5}\]


 (x2 + 1) (x − 5)


\[\frac{2x + 3}{x - 2}\] 


Differentiate each of the following from first principle:

\[a^\sqrt{x}\]


tan (2x + 1) 


\[\cos \sqrt{x}\]


\[\tan \sqrt{x}\] 


cos (x + a)


x3 e


xn tan 


x4 (5 sin x − 3 cos x)


x4 (3 − 4x−5)


Differentiate each of the following functions by the product rule and the other method and verify that answer from both the methods is the same. 

 (3x2 + 2)2


Differentiate each of the following functions by the product rule and the other method and verify that answer from both the methods is the same.

(3 sec x − 4 cosec x) (−2 sin x + 5 cos x)


\[\frac{2x - 1}{x^2 + 1}\] 


\[\frac{e^x - \tan x}{\cot x - x^n}\] 


\[\frac{a x^2 + bx + c}{p x^2 + qx + r}\] 


\[\frac{\sqrt{a} + \sqrt{x}}{\sqrt{a} - \sqrt{x}}\] 


\[\frac{{10}^x}{\sin x}\] 


\[\frac{a + b \sin x}{c + d \cos x}\] 


Write the value of \[\lim_{x \to c} \frac{f(x) - f(c)}{x - c}\] 


Mark the correct alternative in of the following:

Let f(x) = x − [x], x ∈ R, then \[f'\left( \frac{1}{2} \right)\]


Mark the correct alternative in  of the following: 

If \[y = \frac{1 + \frac{1}{x^2}}{1 - \frac{1}{x^2}}\] then \[\frac{dy}{dx} =\] 


Mark the correct alternative in of the following:
If \[f\left( x \right) = x^{100} + x^{99} + . . . + x + 1\]  then \[f'\left( 1 \right)\] is equal to 


Mark the correct alternative in  of the following:
If\[f\left( x \right) = 1 + x + \frac{x^2}{2} + . . . + \frac{x^{100}}{100}\] then \[f'\left( 1 \right)\] is equal to 


Mark the correct alternative in of the following: 

If f(x) = x sinx, then \[f'\left( \frac{\pi}{2} \right) =\] 


`(a + b sin x)/(c + d cos x)`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×