English

Find dydx for the function given in the question: yx = xy - Mathematics

Advertisements
Advertisements

Question

Find `dy/dx` for the function given in the question:

yx = xy

Sum

Solution

Given, yx = xy

Taking logarithm of both sides, log yx = log xy

x log y = y log x

Differentiating both sides with respect to x,

`=> x d/dx log y + log y d/dx (x)`

`= y d/dx log x + log x d/dx y`

`=> x xx 1/y  dy/dx + log y xx 1 = y  xx 1/x + log x dy/dx`

`=> x/y  dy/dx  + log y = y/x + log x dy/dx `

`=> x/y  dy/dx  - log x dy/dx  = y /x - log y` 

`=> dy/dx  (x/y  - log x) = y /x - log y`

`=> dy/dx (x^2 - xy log x) = y ^2 - xy log y` On multiplying by xy,

`therefore dy/dx = (y ^2 - xy log y)/(x^2 - xy log x)` 

shaalaa.com
  Is there an error in this question or solution?
Chapter 5: Continuity and Differentiability - Exercise 5.5 [Page 178]

APPEARS IN

NCERT Mathematics [English] Class 12
Chapter 5 Continuity and Differentiability
Exercise 5.5 | Q 13 | Page 178

RELATED QUESTIONS

Differentiate the following function with respect to x: `(log x)^x+x^(logx)`


 

If `y=log[x+sqrt(x^2+a^2)] ` show that `(x^2+a^2)(d^2y)/(dx^2)+xdy/dx=0`

 

Differentiate the function with respect to x.

`x^x - 2^(sin x)`


Differentiate the function with respect to x.

`(sin x)^x + sin^(-1) sqrtx` 


Differentiate the function with respect to x.

xsin x + (sin x)cos x


Find `dy/dx` for the function given in the question:

`xy = e^((x – y))`


Differentiate (x2 – 5x + 8) (x3 + 7x + 9) in three ways mentioned below:

  1. by using product rule
  2. by expanding the product to obtain a single polynomial.
  3. by logarithmic differentiation.

Do they all give the same answer?


Evaluate 
`int  1/(16 - 9x^2) dx`


Differentiate  
log (1 + x2) w.r.t. tan-1 (x)


Find `(d^2y)/(dx^2)` , if y = log x


If log (x + y) = log(xy) + p, where p is a constant, then prove that `"dy"/"dx" = (-y^2)/(x^2)`.


`"If"  y = sqrt(logx + sqrt(log x + sqrt(log x + ... ∞))), "then show that"  dy/dx = (1)/(x(2y - 1).`


If x = esin3t, y = ecos3t, then show that `dy/dx = -(ylogx)/(xlogy)`.


If y = `log(x + sqrt(x^2 + a^2))^m`, show that `(x^2 + a^2)(d^2y)/(dx^2) + x "d"/"dx"` = 0.


Find the nth derivative of the following : log (2x + 3)


If y = `25^(log_5sin_x) + 16^(log_4cos_x)` then `("d"y)/("d"x)` = ______.


If y = `log[4^(2x)((x^2 + 5)/sqrt(2x^3 - 4))^(3/2)]`, find `("d"y)/("d"x)`


If y = 5x. x5. xx. 55 , find `("d"y)/("d"x)`


If y = `(sin x)^sin x` , then `"dy"/"dx"` = ?


If xy = ex-y, then `"dy"/"dx"` at x = 1 is ______.


If y = tan-1 `((1 - cos 3x)/(sin 3x))`, then `"dy"/"dx"` = ______.


`"d"/"dx" [(cos x)^(log x)]` = ______.


If `("f"(x))/(log (sec x)) "dx"` = log(log sec x) + c, then f(x) = ______.


Derivative of `log_6`x with respect 6x to is ______


`log (x + sqrt(x^2 + "a"))`


`log [log(logx^5)]`


`lim_("x" -> -2) sqrt ("x"^2 + 5 - 3)/("x" + 2)` is equal to ____________.


If `"f" ("x") = sqrt (1 + "cos"^2 ("x"^2)), "then the value of f'" (sqrtpi/2)` is ____________.


If `"y" = "e"^(1/2log (1 +  "tan"^2"x")), "then"  "dy"/"dx"` is equal to ____________.


If y `= "e"^(3"x" + 7), "then the value" |("dy")/("dx")|_("x" = 0)` is ____________.


If `f(x) = log [e^x ((3 - x)/(3 + x))^(1/3)]`,  then `f^'(1)` is equal to


Given f(x) = `log((1 + x)/(1 - x))` and g(x) = `(3x + x^3)/(1 + 3x^2)`, then fog(x) equals


If y = `9^(log_3x)`, find `dy/dx`.


The derivative of log x with respect to `1/x` is ______.


If xy = yx, then find `dy/dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×