Advertisements
Advertisements
Question
By using the properties of the definite integral, evaluate the integral:
`int_0^(pi/2) sqrt(sinx)/(sqrt(sinx) + sqrt(cos x)) dx`
Solution
Let `I = int_0^(pi/2) sqrtsinx/(sqrt sinx + sqrt cos x) dx` ...(i)
Replace x to `(pi/2 - x)` in (i)
`[∵ int_0^a f (x) dx = int_0^a f (a - x) dx]`
`I = int_0^(pi/2) (sqrt sin (pi/2 - x))/ (sqrt sin (pi/2 - x) + sqrt cos (pi/2 - x)) dx`
`I = int_0^(pi/2) sqrtcosx/(sqrtcos x + sqrt sin x) dx` ...(ii)
Adding (i) and (ii), we get
`2I = int_0^(pi/2) [sqrt sinx/ (sqrt sinx + sqrt cos x) + sqrt cos x/(sqrt cos x + sqrt sinx)] dx`
`= int_0^(pi/2) (sqrt cos x + sqrt sin x)/(sqrt cosx + sqrt sin x)`
`= int_0^(pi/2) dx = [x]_0^(pi/2)`
`= pi/2 - 0`
`= pi/2`
⇒ `I = pi/4`
APPEARS IN
RELATED QUESTIONS
Evaluate : `int e^x[(sqrt(1-x^2)sin^-1x+1)/(sqrt(1-x^2))]dx`
Evaluate `int_(-2)^2x^2/(1+5^x)dx`
By using the properties of the definite integral, evaluate the integral:
`int_0^1 x(1-x)^n dx`
By using the properties of the definite integral, evaluate the integral:
`int_0^(pi/2) (2log sin x - log sin 2x)dx`
By using the properties of the definite integral, evaluate the integral:
`int_((-pi)/2)^(pi/2) sin^2 x dx`
By using the properties of the definite integral, evaluate the integral:
`int_0^a sqrtx/(sqrtx + sqrt(a-x)) dx`
Evaluate `int e^x [(cosx - sin x)/sin^2 x]dx`
If \[f\left( a + b - x \right) = f\left( x \right)\] , then prove that
Evaluate : \[\int(3x - 2) \sqrt{x^2 + x + 1}dx\] .
Prove that `int _a^b f(x) dx = int_a^b f (a + b -x ) dx` and hence evaluate `int_(pi/6)^(pi/3) (dx)/(1 + sqrt(tan x))` .
Evaluate : `int 1/("x" [("log x")^2 + 4]) "dx"`
`int_2^7 sqrt(x)/(sqrt(x) + sqrt(9 - x)) dx` = ______.
`int (cos x + x sin x)/(x(x + cos x))`dx = ?
If `int_0^"a" sqrt("a - x"/x) "dx" = "K"/2`, then K = ______.
`int_0^(pi/2) sqrt(cos theta) * sin^2 theta "d" theta` = ______.
If f(x) = |x - 2|, then `int_-2^3 f(x) dx` is ______
`int_(-1)^1 log ((2 - x)/(2 + x)) "dx" = ?`
Find `int_2^8 sqrt(10 - x)/(sqrt(x) + sqrt(10 - x)) "d"x`
`int_(-"a")^"a" "f"(x) "d"x` = 0 if f is an ______ function.
`int_0^(2"a") "f"("x") "dx" = int_0^"a" "f"("x") "dx" + int_0^"a" "f"("k" - "x") "dx"`, then the value of k is:
`int (dx)/(e^x + e^(-x))` is equal to ______.
If `f(a + b - x) = f(x)`, then `int_0^b x f(x) dx` is equal to
`int_a^b f(x)dx = int_a^b f(x - a - b)dx`.
Let f be a real valued continuous function on [0, 1] and f(x) = `x + int_0^1 (x - t)f(t)dt`. Then, which of the following points (x, y) lies on the curve y = f(x)?
The value of the integral `int_(-1)^1log_e(sqrt(1 - x) + sqrt(1 + x))dx` is equal to ______.
If f(x) = `(2 - xcosx)/(2 + xcosx)` and g(x) = logex, (x > 0) then the value of the integral `int_((-π)/4)^(π/4) "g"("f"(x))"d"x` is ______.
`int_(π/3)^(π/2) x sin(π[x] - x)dx` is equal to ______.
`int_0^(π/4) x. sec^2 x dx` = ______.
`int_-1^1 (17x^5 - x^4 + 29x^3 - 31x + 1)/(x^2 + 1) dx` is equal to ______.
Evaluate `int_-1^1 |x^4 - x|dx`.
Evaluate: `int_0^π x/(1 + sinx)dx`.
Evaluate: `int_0^(π/4) log(1 + tanx)dx`.
Evaluate `int_0^3root3(x+4)/(root3(x+4)+root3(7-x)) dx`
Evaluate:
`int_0^1 |2x + 1|dx`
Solve.
`int_0^1e^(x^2)x^3dx`
Evaluate the following integral:
`int_0^1x(1 - x)^5dx`
Evaluate the following integral:
`int_-9^9x^3/(4-x^2)dx`