English

By using the properties of the definite integral, evaluate the integral: ∫0π2 sinxsinx+cosxdx - Mathematics

Advertisements
Advertisements

Question

By using the properties of the definite integral, evaluate the integral:

`int_0^(pi/2)  sqrt(sinx)/(sqrt(sinx) + sqrt(cos x)) dx` 

Sum

Solution

Let `I = int_0^(pi/2) sqrtsinx/(sqrt sinx + sqrt cos x)  dx`     ...(i)

Replace x to `(pi/2 - x)` in (i)

`[∵ int_0^a f (x) dx = int_0^a f (a - x) dx]`

`I = int_0^(pi/2) (sqrt sin (pi/2 - x))/ (sqrt sin (pi/2 - x) + sqrt cos (pi/2 - x))  dx`

`I = int_0^(pi/2) sqrtcosx/(sqrtcos x + sqrt sin x)  dx`       ...(ii)

Adding (i) and (ii), we get

`2I = int_0^(pi/2) [sqrt sinx/ (sqrt sinx + sqrt cos x) + sqrt cos x/(sqrt cos x + sqrt sinx)]  dx` 

`= int_0^(pi/2) (sqrt cos x + sqrt sin x)/(sqrt cosx + sqrt sin x)`

`= int_0^(pi/2) dx = [x]_0^(pi/2)`

`= pi/2 - 0`

`= pi/2`

⇒ `I = pi/4`

shaalaa.com
  Is there an error in this question or solution?
Chapter 7: Integrals - Exercise 7.11 [Page 347]

APPEARS IN

NCERT Mathematics [English] Class 12
Chapter 7 Integrals
Exercise 7.11 | Q 2 | Page 347

RELATED QUESTIONS

Evaluate : `int e^x[(sqrt(1-x^2)sin^-1x+1)/(sqrt(1-x^2))]dx`


 
 

Evaluate `int_(-2)^2x^2/(1+5^x)dx`

 
 

By using the properties of the definite integral, evaluate the integral:

`int_0^1 x(1-x)^n dx`


By using the properties of the definite integral, evaluate the integral:

`int_0^(pi/2) (2log sin x - log sin 2x)dx`


By using the properties of the definite integral, evaluate the integral:

`int_((-pi)/2)^(pi/2) sin^2 x  dx`


By using the properties of the definite integral, evaluate the integral:

`int_0^a  sqrtx/(sqrtx + sqrt(a-x))   dx`


Evaluate `int e^x [(cosx - sin x)/sin^2 x]dx`


If \[f\left( a + b - x \right) = f\left( x \right)\] , then prove that

\[\int_a^b xf\left( x \right)dx = \left( \frac{a + b}{2} \right) \int_a^b f\left( x \right)dx\]

Evaluate : \[\int(3x - 2) \sqrt{x^2 + x + 1}dx\] .


Prove that `int _a^b f(x) dx = int_a^b f (a + b -x ) dx`  and hence evaluate   `int_(pi/6)^(pi/3) (dx)/(1 + sqrt(tan x))` .   


Evaluate : `int 1/("x" [("log x")^2 + 4])  "dx"`


`int_2^7 sqrt(x)/(sqrt(x) + sqrt(9 - x))  dx` = ______.


`int (cos x + x sin x)/(x(x + cos x))`dx = ?


If `int_0^"a" sqrt("a - x"/x) "dx" = "K"/2`, then K = ______.


`int_0^(pi/2) sqrt(cos theta) * sin^2 theta "d" theta` = ______.


If f(x) = |x - 2|, then `int_-2^3 f(x) dx` is ______


`int_(-1)^1 log ((2 - x)/(2 + x)) "dx" = ?`


Find `int_2^8 sqrt(10 - x)/(sqrt(x) + sqrt(10 - x)) "d"x`


`int_(-"a")^"a" "f"(x) "d"x` = 0 if f is an ______ function.


`int_0^(2"a") "f"("x") "dx" = int_0^"a" "f"("x") "dx" + int_0^"a" "f"("k" - "x") "dx"`, then the value of k is:


`int (dx)/(e^x + e^(-x))` is equal to ______.


If `f(a + b - x) = f(x)`, then `int_0^b x f(x)  dx` is equal to


`int_a^b f(x)dx = int_a^b f(x - a - b)dx`.


Let f be a real valued continuous function on [0, 1] and f(x) = `x + int_0^1 (x - t)f(t)dt`. Then, which of the following points (x, y) lies on the curve y = f(x)?


The value of the integral `int_(-1)^1log_e(sqrt(1 - x) + sqrt(1 + x))dx` is equal to ______.


If f(x) = `(2 - xcosx)/(2 + xcosx)` and g(x) = logex, (x > 0) then the value of the integral `int_((-π)/4)^(π/4) "g"("f"(x))"d"x` is ______.


`int_(π/3)^(π/2) x sin(π[x] - x)dx` is equal to ______.


`int_0^(π/4) x. sec^2 x  dx` = ______.


`int_-1^1 (17x^5 - x^4 + 29x^3 - 31x + 1)/(x^2 + 1) dx` is equal to ______.


Evaluate `int_-1^1 |x^4 - x|dx`.


Evaluate: `int_0^π x/(1 + sinx)dx`.


Evaluate: `int_0^(π/4) log(1 + tanx)dx`.


Evaluate `int_0^3root3(x+4)/(root3(x+4)+root3(7-x))  dx`


Evaluate:

`int_0^1 |2x + 1|dx`


Solve.

`int_0^1e^(x^2)x^3dx`


Evaluate the following integral:

`int_0^1x(1 - x)^5dx`


Evaluate the following integral:

`int_-9^9x^3/(4-x^2)dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×