English

RD Sharma solutions for Mathematics [English] Class 12 chapter 12 - Higher Order Derivatives [Latest edition]

Advertisements

Chapters

RD Sharma solutions for Mathematics [English] Class 12 chapter 12 - Higher Order Derivatives - Shaalaa.com
Advertisements

Solutions for Chapter 12: Higher Order Derivatives

Below listed, you can find solutions for Chapter 12 of CBSE, Karnataka Board PUC RD Sharma for Mathematics [English] Class 12.


Exercise 12.1Exercise 12.2Exercise 12.3
Exercise 12.1 [Pages 16 - 18]

RD Sharma solutions for Mathematics [English] Class 12 12 Higher Order Derivatives Exercise 12.1 [Pages 16 - 18]

Exercise 12.1 | Q 1.1 | Page 16

Find the second order derivatives of the following function  x3 + tan x ?

Exercise 12.1 | Q 1.2 | Page 16

Find the second order derivatives of the following function sin (log x) ?

Exercise 12.1 | Q 1.3 | Page 16

Find the second order derivatives of the following function  log (sin x) ?

Exercise 12.1 | Q 1.4 | Page 16

Find the second order derivatives of the following function ex sin 5x  ?

Exercise 12.1 | Q 1.5 | Page 16

Find the second order derivatives of the following function e6x cos 3x  ?

Exercise 12.1 | Q 1.6 | Page 16

Find the second order derivatives of the following function x3 log ?

Exercise 12.1 | Q 1.7 | Page 16

Find the second order derivatives of the following function tan−1 x ?

Exercise 12.1 | Q 1.8 | Page 16

Find the second order derivatives of the following function x cos x ?

Exercise 12.1 | Q 1.9 | Page 16

Find the second order derivatives of the following function  log (log x)  ?

Exercise 12.1 | Q 2 | Page 16

If y = ex cos x, show that \[\frac{d^2 y}{d x^2} = 2 e^{- x} \sin x\] ?

Exercise 12.1 | Q 3 | Page 16

If y = x + tan x, show that  \[\cos^2 x\frac{d^2 y}{d x^2} - 2y + 2x = 0\] ?

Exercise 12.1 | Q 4 | Page 16

If y = x3 log x, prove that \[\frac{d^4 y}{d x^4} = \frac{6}{x}\] ?

Exercise 12.1 | Q 5 | Page 16

If y = log (sin x), prove that \[\frac{d^3 y}{d x^3} = 2 \cos \ x \ {cosec}^3 x\] ?

Exercise 12.1 | Q 6 | Page 16

If y = 2 sin x + 3 cos x, show that \[\frac{d^2 y}{d x^2} + y = 0\] ?

Exercise 12.1 | Q 7 | Page 16

If \[y = \frac{\log x}{x}\] show that \[\frac{d^2 y}{d x^2} = \frac{2 \log x - 3}{x^3}\] ?

Exercise 12.1 | Q 8 | Page 16

If x = a sec θ, y = b tan θ, prove that \[\frac{d^2 y}{d x^2} = - \frac{b^4}{a^2 y^3}\] ?

Exercise 12.1 | Q 9 | Page 16

If `x=a (cos t +t sint )and y= a(sint-cos t )`  Prove that `Sec^3 t/(at),0<t< pi/2` 

Exercise 12.1 | Q 10 | Page 16

If y = ex cos x, prove that \[\frac{d^2 y}{d x^2} = 2 e^x \cos \left( x + \frac{\pi}{2} \right)\] ?

Exercise 12.1 | Q 11 | Page 16

If x = a cos θ, y = b sin θ, show that \[\frac{d^2 y}{d x^2} = - \frac{b^4}{a^2 y^3}\] ?

Exercise 12.1 | Q 12 | Page 16

If x = a (1 − cos3 θ), y = a sin3 θ, prove that \[\frac{d^2 y}{d x^2} = \frac{32}{27a} \text { at } \theta = \frac{\pi}{6}\] ?

Exercise 12.1 | Q 13 | Page 16

If x = a (θ + sin θ), y = a (1 + cos θ), prove that \[\frac{d^2 y}{d x^2} = - \frac{a}{y^2}\] ?

Exercise 12.1 | Q 14 | Page 16

If x = a (θ − sin θ), y = a (1 + cos θ) prove that, find \[\frac{d^2 y}{d x^2}\] ?

Exercise 12.1 | Q 15 | Page 16

If x = a(1 − cos θ), y = a(θ + sin θ), prove that \[\frac{d^2 y}{d x^2} = - \frac{1}{a}\text { at } \theta = \frac{\pi}{2}\] ?

Exercise 12.1 | Q 16 | Page 17

If x = a (1 + cos θ), y = a(θ + sin θ), prove that \[\frac{d^2 y}{d x^2} = \frac{- 1}{a}at \theta = \frac{\pi}{2}\]

Exercise 12.1 | Q 17 | Page 17

If x = cos θ, y = sin3 θ, prove that \[y\frac{d^2 y}{d x^2} + \left( \frac{dy}{dx} \right)^2 = 3 \sin^2 \theta\left( 5 \cos^2 \theta - 1 \right)\] ?

Exercise 12.1 | Q 18 | Page 17

If y = sin (sin x), prove that \[\frac{d^2 y}{d x^2} + \tan x \cdot \frac{dy}{dx} + y \cos^2 x = 0\] ?

Exercise 12.1 | Q 19 | Page 17

If x = sin ty = sin pt, prove that \[\left( 1 - x^2 \right)\frac{d^2 y}{d x^2} - x\frac{dy}{dx} + p^2 y = 0\] ?

Exercise 12.1 | Q 20 | Page 17

If y = (sin−1 x)2, prove that (1 − x2)

\[\frac{d^2 y}{d x^2} - x\frac{dy}{dx} + p^2 y = 0\] ?

Exercise 12.1 | Q 21 | Page 17

If \[y = e^{\tan^{- 1} x}\] prove that (1 + x2)y2 + (2x − 1)y1 = 0 ?

Exercise 12.1 | Q 22 | Page 17

If y = 3 cos (log x) + 4 sin (log x), prove that x2y2 + xy1 + y = 0 ?

Exercise 12.1 | Q 23 | Page 17

If \[y = e^{2x} \left( ax + b \right)\]  show that  \[y_2 - 4 y_1 + 4y = 0\] ?

Exercise 12.1 | Q 24 | Page 17

If `x = sin(1/2 log y)` show that (1 − x2)y2 − xy1 − a2y = 0.

Exercise 12.1 | Q 25 | Page 17

If log y = tan−1 x, show that (1 + x2)y2 + (2x − 1) y1 = 0 ?

Exercise 12.1 | Q 26 | Page 17

If y = tan−1 x, show that \[\left( 1 + x^2 \right) \frac{d^2 y}{d x^2} + 2x\frac{dy}{dx} = 0\] ?

Exercise 12.1 | Q 27 | Page 17

If \[y = \left[ \log \left( x + \sqrt{x^2 + 1} \right) \right]^2\] show that \[\left( 1 + x^2 \right)\frac{d^2 y}{d x^2} + x\frac{dy}{dx} = 2\] ?

Exercise 12.1 | Q 28 | Page 17

If y = (tan−1 x)2, then prove that (1 + x2)2 y2 + 2x(1 + x2)y1 = 2 ?

Exercise 12.1 | Q 29 | Page 17

If y = cot x show that \[\frac{d^2 y}{d x^2} + 2y\frac{dy}{dx} = 0\] ?

Exercise 12.1 | Q 30 | Page 17

Find \[\frac{d^2 y}{d x^2}\] where \[y = \log \left( \frac{x^2}{e^2} \right)\] ?

Exercise 12.1 | Q 31 | Page 17

If y = ae2x + be−x, show that, \[\frac{d^2 y}{d x^2} - \frac{dy}{dx} - 2y = 0\] ?

Exercise 12.1 | Q 32 | Page 17

If y = ex (sin + cos x) prove that \[\frac{d^2 y}{d x^2} - 2\frac{dy}{dx} + 2y = 0\] ?

Exercise 12.1 | Q 33 | Page 17

If y = cos−1 x, find \[\frac{d^2 y}{d x^2}\] in terms of y alone ?

Exercise 12.1 | Q 34 | Page 17

If  \[y = e^{a \cos^{- 1}} x\] ,prove that \[\left( 1 - x^2 \right)\frac{d^2 y}{d x^2} - x\frac{dy}{dx} - a^2 y = 0\] ?

Exercise 12.1 | Q 35 | Page 17

If y = 500 e7x + 600 e−7x, show that \[\frac{d^2 y}{d x^2} = 49y\] ?

Exercise 12.1 | Q 36 | Page 17

If x = 2 cos t − cos 2ty = 2 sin t − sin 2t, find \[\frac{d^2 y}{d x^2}\text{ at } t = \frac{\pi}{2}\] ?

Exercise 12.1 | Q 37 | Page 17

If x = 4z2 + 5, y = 6z2 + 7z + 3, find \[\frac{d^2 y}{d x^2}\] ?

Exercise 12.1 | Q 38 | Page 17

If y log (1 + cos x), prove that \[\frac{d^3 y}{d x^3} + \frac{d^2 y}{d x^2} \cdot \frac{dy}{dx} = 0\] ?

Exercise 12.1 | Q 39 | Page 17

If y = sin (log x), prove that \[x^2 \frac{d^2 y}{d x^2} + x\frac{dy}{dx} + y = 0\] ?

Exercise 12.1 | Q 40 | Page 18

If y = 3 e2x + 2 e3x, prove that  \[\frac{d^2 y}{d x^2} - 5\frac{dy}{dx} + 6y = 0\] ?

Exercise 12.1 | Q 41 | Page 18

If y = (cot−1 x)2, prove that y2(x2 + 1)2 + 2x (x2 + 1) y1 = 2 ?

Exercise 12.1 | Q 42 | Page 18

If y = cosec−1 xx >1, then show that \[x\left( x^2 - 1 \right)\frac{d^2 y}{d x^2} + \left( 2 x^2 - 1 \right)\frac{dy}{dx} = 0\] ?

Exercise 12.1 | Q 43 | Page 18

\[\text { If x } = \cos t + \log \tan\frac{t}{2}, y = \sin t, \text { then find the value of } \frac{d^2 y}{d t^2} \text { and } \frac{d^2 y}{d x^2} \text { at } t = \frac{\pi}{4} \] ?

Exercise 12.1 | Q 44 | Page 18

\[ \text { If x } = a \sin t \text { and y } = a\left( \cos t + \log \tan\frac{t}{2} \right), \text { find } \frac{d^2 y}{d x^2} \] ?

Exercise 12.1 | Q 45 | Page 18

\[\text { If x } = a\left( \cos t + t \sin t \right) \text { and y} = a\left( \sin t - t \cos t \right),\text { then find the value of } \frac{d^2 y}{d x^2} \text { at } t = \frac{\pi}{4} \] ?

Exercise 12.1 | Q 46 | Page 18

\[\text{ If x } = a\left( \cos t + \log \tan\frac{t}{2} \right) \text { and y } = a\left( \sin t \right), \text { evaluate } \frac{d^2 y}{d x^2} \text { at t } = \frac{\pi}{3} \] ?

Exercise 12.1 | Q 47 | Page 18

\[\text { If x } = a\left( \cos2t + 2t \sin2t \right)\text {  and y } = a\left( \sin2t - 2t \cos2t \right), \text { then find } \frac{d^2 y}{d x^2} \] ?

Exercise 12.1 | Q 48 | Page 18

If \[x = 3 \cos t - 2 \cos^3 t, y = 3\sin t - 2 \sin^3 t,\] find \[\frac{d^2 y}{d x^2} \] ?

Exercise 12.1 | Q 49 | Page 18

\[\text { If x } = a \sin t - b \cos t, y = a \cos t + b \sin t, \text { prove that } \frac{d^2 y}{d x^2} = - \frac{x^2 + y^2}{y^3} \] ?

Exercise 12.1 | Q 50 | Page 18

\[\text { Find A and B so that y = A } \sin3x + B \cos3x \text { satisfies the equation }\]

\[\frac{d^2 y}{d x^2} + 4\frac{d y}{d x} + 3y = 10 \cos3x \] ?

Exercise 12.1 | Q 51 | Page 18

\[\text { If }y = A e^{- kt} \cos\left( pt + c \right), \text { prove that } \frac{d^2 y}{d t^2} + 2k\frac{d y}{d t} + n^2 y = 0, \text { where } n^2 = p^2 + k^2 \] ?

Exercise 12.1 | Q 52 | Page 18

\[\text { If y } = x^n \left\{ a \cos\left( \log x \right) + b \sin\left( \log x \right) \right\}, \text { prove that } x^2 \frac{d^2 y}{d x^2} + \left( 1 - 2n \right)x\frac{d y}{d x} + \left( 1 + n^2 \right)y = 0 \] Disclaimer: There is a misprint in the question. It must be 

\[x^2 \frac{d^2 y}{d x^2} + \left( 1 - 2n \right)x\frac{d y}{d x} + \left( 1 + n^2 \right)y = 0\] instead of 1

\[x^2 \frac{d^2 y}{d x^2} + \left( 1 - 2n \right)\frac{d y}{d x} + \left( 1 + n^2 \right)y = 0\] ?

Exercise 12.1 | Q 53 | Page 18

\[\text { If y } = a \left\{ x + \sqrt{x^2 + 1} \right\}^n + b \left\{ x - \sqrt{x^2 + 1} \right\}^{- n} , \text { prove that }\left( x^2 + 1 \right)\frac{d^2 y}{d x^2} + x\frac{d y}{d x} - n^2 y = 0 \]

Disclaimer: There is a misprint in the question,

\[\left( x^2 + 1 \right)\frac{d^2 y}{d x^2} + x\frac{d y}{d x} - n^2 y = 0\] must be written instead of

\[\left( x^2 - 1 \right)\frac{d^2 y}{d x^2} + x\frac{d y}{d x} - n^2 y = 0 \] ?

Exercise 12.2 [Page 22]

RD Sharma solutions for Mathematics [English] Class 12 12 Higher Order Derivatives Exercise 12.2 [Page 22]

Exercise 12.2 | Q 1 | Page 22

If y = a xn + 1 + bxn and \[x^2 \frac{d^2 y}{d x^2} = \lambda y\]  then write the value of λ ?

Exercise 12.2 | Q 2 | Page 22

If x = a cos nt − b sin nt and \[\frac{d^2 x}{dt} = \lambda x\]  then find the value of λ ?

Exercise 12.2 | Q 3 | Page 22

If x = t2 and y = t3, find \[\frac{d^2 y}{d x^2}\] ?

Exercise 12.2 | Q 4 | Page 22

If x = 2aty = at2, where a is a constant, then find \[\frac{d^2 y}{d x^2} \text { at }x = \frac{1}{2}\] ?

Exercise 12.2 | Q 5 | Page 22

If x = f(t) and y = g(t), then write the value of \[\frac{d^2 y}{d x^2}\] ?

Exercise 12.2 | Q 6 | Page 22

If \[y = 1 - x + \frac{x^2}{2!} - \frac{x^3}{3!} + \frac{x^4}{4!}\] .....to ∞, then write  \[\frac{d^2 y}{d x^2}\] in terms of y ?

Exercise 12.2 | Q 7 | Page 22

If y = x + ex, find \[\frac{d^2 x}{d y^2}\] ?

Exercise 12.2 | Q 8 | Page 22

If y = |x − x2|, then find \[\frac{d^2 y}{d x^2}\] ?

Exercise 12.2 | Q 9 | Page 22

If \[y = \left| \log_e x \right|\] find\[\frac{d^2 y}{d x^2}\] ?

Exercise 12.3 [Pages 22 - 24]

RD Sharma solutions for Mathematics [English] Class 12 12 Higher Order Derivatives Exercise 12.3 [Pages 22 - 24]

Exercise 12.3 | Q 1 | Page 22

If x = a cos nt − b sin nt, then \[\frac{d^2 x}{d t^2}\] is 

 

  • n2 x

  • −n2 x

  • −nx

  • nx

Exercise 12.3 | Q 2 | Page 22

If x = at2, y = 2 at, then \[\frac{d^2 y}{d x^2} =\] 

 

  • \[- \frac{1}{t^2}\]

  • \[\frac{1}{2 \ at^3}\]

  • \[- \frac{1}{t^3}\]

  • \[- \frac{1}{ 2 \ at^3}\]

Exercise 12.3 | Q 3 | Page 23

If y = axn+1 + bx−n, then \[x^2 \frac{d^2 y}{d x^2} =\] 

 

  • n (n − 1)y

  • n (n − 1)y

  •  ny

  •  n2y

Exercise 12.3 | Q 4 | Page 23

\[\frac{d^{20}}{d x^{20}} \left( 2 \cos x \cos 3 x \right) =\]

 

  • 220 (cos 2 x − 220 cos 4 x)

  • 220 (cos 2 x + 220 cos 4 x)

  • 220 (sin 2 x + 220 sin 4 x)

  • 220 (sin 2 x − 220 sin 4 x)

Exercise 12.3 | Q 5 | Page 23

If x = t2, y = t3, then \[\frac{d^2 y}{d x^2} =\] 

 

  • 3/2

  • 3/4t

  • 3/2t

  • 3t/2

Exercise 12.3 | Q 6 | Page 23

If y = a + bx2, a, b arbitrary constants, then

 

  • \[\frac{d^2 y}{d x^2} = 2xy\] 

  • \[x\frac{d^2 y}{d x^2} = y_1\]

  • \[x\frac{d^2 y}{d x^2} - \frac{dy}{dx} + y = 0\]

  • \[x\frac{d^2 y}{d x^2} = 2 xy\]

Exercise 12.3 | Q 7 | Page 23

If f(x) = (cos x + i sin x) (cos 2x + i sin 2x) (cos 3x + i sin 3x) ...... (cos nx + i sin nx) and f(1) = 1, then f'' (1) is equal to

 

  • \[\frac{n\left( n + 1 \right)}{2}\]

  • \[\left\{ \frac{n\left( n + 1 \right)}{2} \right\}^2\]

  • \[- \left\{ \frac{n\left( n + 1 \right)}{2} \right\}^2\]

  • none of these

Exercise 12.3 | Q 8 | Page 23

If y = a sin mx + b cos mx, then \[\frac{d^2 y}{d x^2}\]   is equal to

 

  • −m2y

  • m2y

  • −my

  • my

Exercise 12.3 | Q 9 | Page 23

If \[f\left( x \right) = \frac{\sin^{- 1} x}{\sqrt{1 - x^2}}\] then (1 − x)2 '' (x) − xf(x) =

 

  • 1

  • −1

  • 0

  • none of these

Exercise 12.3 | Q 10 | Page 23

If \[y = \tan^{- 1} \left\{ \frac{\log_e \left( e/ x^2 \right)}{\log_e \left( e x^2 \right)} \right\} + \tan^{- 1} \left( \frac{3 + 2 \log_e x}{1 - 6 \log_e x} \right)\], then \[\frac{d^2 y}{d x^2} =\]

 

  • 2

  • 1

  • 0

  • −1

Exercise 12.3 | Q 11 | Page 23

Let f(x) be a polynomial. Then, the second order derivative of f(ex) is


  • f'' (ex) e2x + f'(ex) ex

  •  f'' (ex) ex + f' (ex)

  • f'' (ex) e2x + f'' (ex) ex

  •  f'' (ex)

Exercise 12.3 | Q 12 | Page 23

If y = a cos (loge x) + b sin (loge x), then x2 y2 + xy1 =

  • 0

  • y

  • y

  • none of these

Exercise 12.3 | Q 13 | Page 23

If x = 2 at, y = at2, where a is a constant, then \[\frac{d^2 y}{d x^2} \text { at x } = \frac{1}{2}\] is 

 

  • 1/2a

  • 1

  • 2a

  • none of these

Exercise 12.3 | Q 14 | Page 23

If x = f(t) and y = g(t), then \[\frac{d^2 y}{d x^2}\] is equal to

 

  • \[\frac{f' g'' - g'f''}{\left( f' \right)^3}\]

  • \[\frac{f' g'' - g'f''}{\left( f' \right)^2}\]

  • \[\frac{g''}{f''}\]

  • \[\frac{f'' g' - g'' f'}{\left( g' \right)^3}\]

Exercise 12.3 | Q 15 | Page 24

If y = sin (m sin−1 x), then (1 − x2) y2 − xy1 is equal to

  • m2y

  • my

  • −m2y

  • none of these

Exercise 12.3 | Q 16 | Page 24

If y = (sin−1 x)2, then (1 − x2)y2 is equal to

 

  • xy1 + 2

  •  xy1 − 2

  • xy1+2

  • none of these

Exercise 12.3 | Q 17 | Page 24

If y = etan x, then (cos2 x)y2 =

  • (1 − sin 2xy1

  • −(1 + sin 2x)y1

  • (1 + sin 2x)y1

  • none of these

Exercise 12.3 | Q 19 | Page 24

If \[y = \frac{ax + b}{x^2 + c}\] then (2xy1 + y)y3 = 

 

  • 3(xy2 + y1)y2

  • 3(xy1 + y2)y2

  • 3(xy2 + y1)y1

  • none of these

Exercise 12.3 | Q 20 | Page 24

If \[y = \log_e \left( \frac{x}{a + bx} \right)^x\] then x3 y2 =

 

  • (xy1 − y)2

  • (1 + y)2

  • \[\left( \frac{y - x y_1}{y_1} \right)^2\]

  • none of these

Exercise 12.3 | Q 21 | Page 24

If x = f(t) cos t − f' (t) sin t and y = f(t) sin t + f'(t) cos t, then\[\left( \frac{dx}{dt} \right)^2 + \left( \frac{dy}{dt} \right)^2 =\]

 

  •  f(t) − f''(t)

  • {f(t) − f'' (t)}2

  • {f(t) + f''(t)}2

  • none of these

Exercise 12.3 | Q 22 | Page 24

If \[y^\frac{1}{n} + y^{- \frac{1}{n}} = 2x, \text { then find } \left( x^2 - 1 \right) y_2 + x y_1 =\] ?

  • `-n^2y`

  • my

  • `n^2y`

  • None of these 

Exercise 12.3 | Q 23 | Page 24

If \[\frac{d}{dx}\left[ x^n - a_1 x^{n - 1} + a_2 x^{n - 2} + . . . + \left( - 1 \right)^n a_n \right] e^x = x^n e^x\] then the value of ar, 0 < r ≤ n, is equal to 

 

  • \[\frac{n!}{r!}\]

  • \[\frac{\left( n - r \right)!}{r!}\]

  • \[\frac{n!}{\left( n - r \right)!}\]

  • none of these

Exercise 12.3 | Q 24 | Page 24

If y = xn−1 log x then x2 y2 + (3 − 2n) xy1 is equal to

  • −(n − 1)2 y

  • (n − 1)2y

  • −n2y

  •  n2y

Exercise 12.3 | Q 25 | Page 24

If xy − loge y = 1 satisfies the equation \[x\left( y y_2 + y_1^2 \right) - y_2 + \lambda y y_1 = 0\]

 

  • −3

  • 1

  • 3

  • none of these

Exercise 12.3 | Q 26 | Page 24

If y2 = ax2 + bx + c, then \[y^3 \frac{d^2 y}{d x^2}\] is 

 

  • a constant

  • a function of x only

  • a function of y  only

  • a function of x and y

Solutions for 12: Higher Order Derivatives

Exercise 12.1Exercise 12.2Exercise 12.3
RD Sharma solutions for Mathematics [English] Class 12 chapter 12 - Higher Order Derivatives - Shaalaa.com

RD Sharma solutions for Mathematics [English] Class 12 chapter 12 - Higher Order Derivatives

Shaalaa.com has the CBSE, Karnataka Board PUC Mathematics Mathematics [English] Class 12 CBSE, Karnataka Board PUC solutions in a manner that help students grasp basic concepts better and faster. The detailed, step-by-step solutions will help you understand the concepts better and clarify any confusion. RD Sharma solutions for Mathematics Mathematics [English] Class 12 CBSE, Karnataka Board PUC 12 (Higher Order Derivatives) include all questions with answers and detailed explanations. This will clear students' doubts about questions and improve their application skills while preparing for board exams.

Further, we at Shaalaa.com provide such solutions so students can prepare for written exams. RD Sharma textbook solutions can be a core help for self-study and provide excellent self-help guidance for students.

Concepts covered in Mathematics [English] Class 12 chapter 12 Higher Order Derivatives are Maximum and Minimum Values of a Function in a Closed Interval, Maxima and Minima, Simple Problems on Applications of Derivatives, Graph of Maxima and Minima, Approximations, Tangents and Normals, Increasing and Decreasing Functions, Rate of Change of Bodies or Quantities, Introduction to Applications of Derivatives.

Using RD Sharma Mathematics [English] Class 12 solutions Higher Order Derivatives exercise by students is an easy way to prepare for the exams, as they involve solutions arranged chapter-wise and also page-wise. The questions involved in RD Sharma Solutions are essential questions that can be asked in the final exam. Maximum CBSE, Karnataka Board PUC Mathematics [English] Class 12 students prefer RD Sharma Textbook Solutions to score more in exams.

Get the free view of Chapter 12, Higher Order Derivatives Mathematics [English] Class 12 additional questions for Mathematics Mathematics [English] Class 12 CBSE, Karnataka Board PUC, and you can use Shaalaa.com to keep it handy for your exam preparation.

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×